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I.  INTRODUCTION 

A.  Scope 

This report summarizes the results of the initial phase of a comprehen- 

sive simulation study of alternative signal processing algorithms for data 

adaptive superresolution direction finding and spatial nulling to support sig- 

nal copy in the presence of strong cochannel interference. The need for such 

a study arises because, although most of the techniques evaluated have been 

documented in the literature, no systematic comparison has heretofore been 

undertaken. 

The general approach of the current study is to simulate a sequence of 

increasingly more general, i.e, realistic, signaling environments, and to 

expose each of the more promising algorithms to all of the "standardized" 

experiments, in turn. For the initial phase of the inquiry, we have selected 

an ideal environment characterized by a uniform, linear array of identical 

isotropic elements and perfect receivers. In addition, partial results are 

obtained for the case when the array steering vectors are in error by a small 

amount which might be caused by residual calibration errors, unmodeled multi- 

path distortions, near-field emitters, etc. 

B.  Focus of the Initial Inquiry 

Many of the techniques proposed for superresolution array processing have 

their origin in spectral estimation for time series. Since the sampling of a 

function in time is analogous to sampling a function in space, it is natural 

to make this association; estimating the frequency of sinusoids in noise can 

be seen to be equivalent to estimating the directions of planewaves in noise. 

Although the superresolution problem involves finding plane waves in 

noise, most spectral estimation techniques make no use of any information 

about the underlying process. Indeed, such methods are only heuristically 

motivated, since the estimation of a completely unknown function based upon a 

finite number of samples is at best an underdefined process.  Nevertheless, 



since claims of success have been made for such techniques, we thought it best 

to start our investigation by reviewing these "classical" techniques. 

Representative of such techniques are the following: 

(1) Adapted Angular Response (AAR) [13] 

(2) Maximum Entropy Method (MEM) [9] 

(3) Maximum Likelihood Method (MLM) [12] 

(4) Thermal Noise Algorithm (TNA) [15] 

By contrast with classical spectral methods, a technique which uses (re- 

quires) the fact that the number of plane waves is finite is the MUSIC 

algorithm [16]. MUSIC, which denotes Multiple Signal Classification, is an 

extension of the method of Pisarenko [18]. MUSIC Is but one member of a class 

of methods based upon the decomposition of covariance data into eigenvectors 

and eigenvalues. Such techniques, known as Singular Value Decompositions 

(SVD's), will be more completely reviewed in a subsequent phase of the study. 

In order to place SVD techniques relative to the classical methods, however, 

results for MUSIC are included in this report. 

All of the techniques reviewed have application to arbitrary array geom- 

etries. When the array happens to be linear, however, it is possible to take 

advantage of the structure of the array to improve the resolving power of 

these techniques [2]. Each of the techniques involves the calculation of a 

quadratic form which, in the case of the linear array, becomes a complex, 

trigonometric polynomial which is being evaluated on the unit circle in the 

complex plane. The behavior of such functions is dominated by the polynomial 

roots which lie on or close to the unit circle. Thus, a rooting variant of 

each technique is possible which computes the arguments of the roots closest 

to the unit circle. The rooting variant of TNA is identical to that of AAR, 

so that only four rooting algorithms have been presented. 



The adaptive listening or copy functions for closely-spaced signals 

requires the use of main-beam nulling. Since this is difficult to accomplish 

without accidentally nulling the desired signal [23], however, much attention 

must be placed upon the sensitivity introduced by only approximately knowing 

the direction of the desired signal. Two covariance modeling techniques for 

steering nulls in the direction of interferers are reviewed in this report. 

The sensitivity to errors in the knowledge of the array response to plane 

waves will be the subject of a detailed study in a subsequent report. Only a 

brief introduction to this subject is included here to determine the conse- 

quences of such errors on the ability to place nulls for copy by the modeling 

techniques described above. A simple direction-independent gain and phase 

error, independent from receiver to receiver, has been utilized for this 

initial investigation. 

C.  Overview of the Report 

The following section (II) describes the performance bounds for direction 

finding and copy. The bounds for estimation errors are the Cramer-Rao type 

for the assumed case of Gaussian signals in Gaussian noise; the limiting per- 

formance for ideal arrays and infinite data are given for copy performance 

bounds. 
An expanded description of the algorithms considered during this study is 

given in Section III. The emphasis in this section is a comparative introduc- 

tion to the techniques for direction finding, power estimation and adaptive 

copy weighting. 

An overview of the simulation approach used for this study is given in 

Section IV and the results are summarized in Section V. Various appendices 

elaborating on some topics and a complete collection of the Monte Carlo simu- 

lation outputs are also included. 



D.  Major Findings " 

The principal conclusions based upon the initial experiments are as 

follows: 

1. Although some of the spectral algorithms tested to date are more 
sensitive than MUSIC, the angle estimates provided by these 
algorithms are generally poor. 

2. For the linear array problem, a root variant of MUSIC exists 
which is considerably more sensitive than the spectral version. 

3. The direct solution for the power present in multiple directions 
can fail because of mutual dependencies among direction vectors 
whenever the array is irregular. This difficulty can be overcome 
by formulating the power estimation as a least-squares problem. 

4. Modeling of interference vectors provides an effective means of 
avoiding signal cancellation as a result of direction-of-arrival 
errors for the desired signal. Unfortunately, the resulting per- 
formance is very sensitive to array calibration errors. 

The implications of these observations are that Singular-Value Decomposi- 

tion is a desirable prerequisite for superresolution of plane waves and 

the exploitation of special array structures leads to increased resolution 

sensitivity, but that sensitivity to array errors is the most serious obstacle 

to successful implementation. For these reasons, the emphasis for the next 

phase of the study will be in the following areas: 

1. Singular-Value Decomposition techniques 

2. Maximal exploitation of linear array structures 

3. Robust algorithms to reduce array error sensitivities 

In addition to these areas of emphasis, Monte Carlo experiments will be 

extended to explore the effects of larger numbers of signals, decreased SIR, 

and various forms of array errors. 



II.  THEORETICAL PERFORMANCE BOUNDS 

A.  Direction-Finding 

A major portion of this report is concerned with direction-finding (DF) 

algorithms and their expected performance, as determined by extensive Monte 

Carlo simulations. Although these results can be studied on a stand-alone 

basis, suitable theoretical benchmarks serve to put the results in a better 

perspective. 
Perhaps the most desirable benchmark would be the performance achieved by 

the quintessential ••optimum" processor. Given such a benchmark, one could 

reasonably expect to make sound- judgements as to whether or not a particular 

algorithm was "good enough". Unfortunately, optimum processors can be prohib- 

itively expensive to simulate. Moreover, practical applications are often 

sufficiently complicated that a single criterion for "optimally" is virtually 

impossible to define. 
As a relevant case in point, consider the problem of direction-finding in 

a multiple emitter environment. This problem is characterized by an unknown 

number of signals arriving from unknown directions. Thus, a good DF algorithm 

rcust determine the number of signals present as well as provide accurate di- 

rection estimates. In some instances, estimates of the signal power levels 

are also required. Finally, in order to be useful in unfriendly environments, 

all of these requirements must be met without detailed knowledge of the signal 

waveforms. 
Taken in its entirety, the multiple emitter DF. problem is too complex to 

admit a comprehensive theoretical analysis. One possible simplification is to 

specify the number of emitters. In this case, one can obtain theoretical 

bounds on the accuracy of the (DF) estimates by computing the relevant Fisher 

information matrix. Inverting this matrix yields the Cramer-Rao bound on the 

variance of any unbiased estimate. 

For the purposes of direction-finding, the assumption is made that the 

signal sources are stationary (complex) Gaussian random processes. The re- 

eived signals are sampled at a rate less than the receiver bandwidth.  Under 



the latter assumption, the signals obtained at two different instants of time 

are statistically uncorrelated. This model is extremely convenient for gener- 

ating simulation data and leads to performance bounds that depend only on the 

signal directions and powers. 

The Cramer-Rao (C-R) bound for locating Gaussian emitters is derived in 

Appendix A. Here, we merely state the underlying model and present the final 

form of the result. To check the tightness of the bound, F. White [1] has 

investigated the performance of two "optimum" DF processors. His results 

indicate that the C-R bound is achievable over an interesting and broad range 

of parameter values. 

The samples obtained from the array elements at any given instant of 

time, called a snapshot, may be modelled as a vector 

r = s + n 

where n denotes the contribution from thermal noise and other sources of error 

in the receiver(s) and s represents the received signal(s). When only one 

emitter is present, the signal vector may be written as 

s = v(ct) p , 

where p is the complex amplitude of the signal that would be observed at the 

phase center of the array, and v(a) is a vector constructed from the complex 

oltage gains of the individual array elements. The vector v(«t) is often 

referred to as a "direction" or "steering" vector since it depends only upon 

the direction of arrival of the signal. For linear arrays, the most 

convenient measure of direction is the cosine of the angle between the array 

axis and the line-of-sight to the signal.  The direction cosine is denoted by 

a. 
When more than one emitter is present, the principle of superposition 

allows us to write the received signal as 



s = Vp 

where the jth element of the vector p is the complex amplitude of the signal 

from the jth emitter as "seen" at the array phase center. Note that the jth 

column of the matrix V is the direction vector associated with the jth 

emitter, i.e., 

V = [v(<0 I . . . I v(aj)] 

where J denotes the actual number of emitters. 

Under our statistical assumptions, the "signal-in-space" vector p is 

completely described by its mean value, assumed to be zero, and its covariance 

P=E{ppH} 

where E{x} generally denotes the expected value of x, and a superscript "H" 

indicates the conjugate (Hermitian) transpose operation. Naturally, the 

Gaussian model is extended to include the noise vector n, and we represent the 

noise covariance matrix as 

N = E {nnff } 

Assuming the noise statistics are known, one could always normalize (or 

transform) the data in such a way that the components of the noise vector n 

are identically distributed and statistically independent (uncorrelated). 

Unless otherwise explicitly stated, we will proceed under the assumption that 

the noise covariance is the identity matrix I. 

Consider the problem of estimating the directions of arrival when the 

signal-in-space covariance P is known. The Fisher information matrix for this 

problem can be stated in a reasonably compact form by first introducing the 

gramian matrix 



w4v=v 

and solving 

P-0 = PWO 

for 0.  It can be shown that this equation always has a unique (Hermitian) 

solution. We next introduce the "derivative" of V 

V = [vCctj) | . . . | vCttj)]    , 

where 

v = dv/dct 

is the usual derivative of v with respect to a.  It is also convenient to 

define 

Under the conditions stated above, the Fisher matrix for the unknown 

directions a is given by 

F  = 2K Re I (P-0)T G (^V - wV) + (QW)TG (0») } 
act 

where K is the number of available snapshots (observations). Re{x} denotes 

the real part of x, and a superscript "T" refers to the usual transpose 

operation. The element by element (Hadamard) product of two matrices A and B 

with the same dimensions is written as ADS. 



The main diagonal of the inverse of the Fisher matrix provides a lower 

bound on the accuracy (i.e., variance) of any unbiased DF estimate. However, 

when the signal-in-space covariance P is also unknown, the resulting bounds 

are not as tight as they might be. 

If the signal-in-space covariance were completely unspecified, generating 

the required Fisher matrix would become extremely awkward. Fortunately, many 

applications of interest are adequately modelled by assuming uncorrelated 

emitters. In this important special case, F is a diagonal matrix, i.e., 

Plj = 0 ; i * j 

Thus, consider the vector g obtained by taking the logarithm of the emitter 

"powers" (i.e., the main diagonal elements of P). When the directions of ar- 

rival are known, the normalized Fisher matrix for estimating the emitter pow- 

ers can be written as 

F  = K (OW) D (QW)T • 

When the directions and powers are both unknown, the "reduced" information 

matrix for the directions is generally of the form 

F<2> = F  - FT F"1 F      . 
eta    eta   3a gg  ßa 

The amount of information lost depends upon the coupling matrix, which is 

given by 

F„ = 2K Re { (OW) D (QW)T} 

for the problem considered here. 



Inverting the reduced information matrix yields the C-R bound for 

(unbiased) DF estimates when the emitter powers are also unknown. While the 

exact expressions given above appear to be quite formidable, the asymptotic 

form of the DF bound is really quite simple. As the signal-to-noise ratios of 

all of the emitters become arbitrarily large, we may replace Q with the in- 

verse of W (provided it exists, of course). Eventually, P completely domi- 

nates 0 and the asymptotic approximation 

F(S) __> F  —> 2K PDA 
eta      act 

emerges, where the array factor 

A = V*V - tfVM 

depends only on the directions of arrival. Since P is a diagonal matrix, in- 

verting P[]A is trivial and the asymptotic accuracy of any unbiased DF esti- 

mate is bounded by 

Var {a.}  —> [2K P. .&..( c^, .... Oj)] 
-1 

where Var {x} denotes the variance of a random variable x. Surprisingly, the 

asymptotic error predicted by the DF bound is independent of the relative 

strength of the emitters! However, as expected, the asymptotic DF variance is 

inversely proportional to the product of the signal-to-noise ratio and the 

number of snapshots. 
unfortunately, the array factor is generally a very complicated function 

of the directions of arrival and the array geometry. However, certain simpli 

fications are possible under the assumption of identical elements in a linear 

array.  In particular, the phase reference point may be chosen so that 

vHv = 0 

Consequently, the array factor for a single emitter is given by 

10 



H = v 

and the array factor for two emitters may be written as 

A.-Cc^, c^) = S ^(«2 - c^)  ; j = 1,2 

where n(a) is a symmetric function which approaches unity for sufficiently 

large «. Thus, n may be interpreted as an efficiency factor that only depends 

on the separation of the two emitters [2]. 

B.  Adaptive Listening 

A phased array receiver is assumed to be used to monitor, or listen, to 

a desired emitter by discriminating against the undesired emitters only on the 

basis of differences in angular directions of arrival. An adaptive array 

differs from a more conventional phased array in that the complex weights 

associated with the antenna elements are not determined by the designer a 

priori. Instead, these weights are optimized, according to some criterion, on 

' the basis of measurements which are made on the signal environment. 

Let xfc denote vector sample of complex array data collected during the 

kth snapshot, where k-l,...,K. As in the above discussion, the data are 

representable as 

xk-P8v(a8) + Vk
+ \ 

where it is assumed that the desired emitter arrives from direction a- with 

complex amplitude ps and the jth component of the vector pk is the complex 

amplitude of the jth interference wave source and 

VI = [v(ax)| . . • |v(aj_l)] 

is the matrix of the interferer direction vectors.  The objective of the 

adaptive listening array is to enhance the gain of the array toward the a 

11 



desired signal while simultaneously nulling the signal energy due to the 

directional interference. This is accomplished by computing a set of 

complex-valued element weights which, when applied to the element outputs and 

linearly combined, results in a complex scalar array output of the form 

H 
\  = W *k 

If the signals and noise are Gaussian, the weight vector which maximizes the 

probability of detection of the desired signal is given by 

w * PC v( a ) o   «    s 

where RN is the spatial covariance of the interference plus noise, viz. 

RN-EUVA + \1   CVIPk+ \]H} 

.- VJPJV? + I , 

where, as above, we have taken the noise to be Isotropie with unit variance. 

Moreover, this same weight vector maximizes the output signal power to 

average interference-plus-noise power ratio (SIR), given by 

SIR = Ps|w
Hv(a)| /WH P^ W  , 

Where ?s is the power of the desired signal, thus, the maximum output SIR is 

given by 

SIR  = P0 v
H(a ) R^J v(a ) max  s    s  N    s 

12 



In the present application, it is important to separate the desired 

emitter from the interference and noise. In this .case, we start by observing 

the covariance with all signals present 

™  1  V    H 

k=l 

Of course, in the limit for large sample size, R converges to R, where 

R = RN + Ps v(ag) v
H(as)" 

so that 

R^vCa ) = [1/(1 + To)] ^v(«s) 

where T = SIRm . o     max 

Thus, if v(a ) is correct, w = R-1 v(a ) will converge to the maximum SIR 
's ° 

weight vector in the limit for large K. Unfortunately, as Miller [49] and 

Boroson [50] have noted, the convergence rate will be dependent upon T0. 

Specifically, if we define a generalized SIR as 

2 
GIR(vs,P, v) = Ps  |v

H P"1 vs| / vH P'1 RJJ P"1 v 

then the convergence of the sampled data weight vector depends upon 

GIR(v , R, v ) 
p ä  1 5-   =  p/[l + To (1 - p)] 

o 

where p is distributed according to the Beta density [49], [50] 

13 



f(p) = [1 / B(L - 1, K + 2 - 1)] pK"L+1 (1 " P) 

0 < p < 1 

with B(M, N) = (M-1)!(N-1)!/(M+N-1)! 

Therefore, 

P[Pl < 1 - 6] = P{p < (1 - 6) (1 + To)/[l + To(l - 6)] } 

If the desired signal power in the covariance matrix were zero, the above 

expression predicts the familiar result of Reed, et al. [22] that K > 2L - 3 

will result inE[pil > 1/2. On the other hand, with T0 = 20 dB, as many 

as 50 times as many samples would be needed to achieve the same result [50, 

Fig. 3]. 
Throughout the preceding discussion, the steering constraint for the 

listening weight vector was taken to be correct. Actually, this constraint 

must be obtained from the direction-finding process described above in Section 

A. Thus, we have only an estimate ^ of the signal direction. Since we 

need a direction vector to constrain the listening weights, however, we may 

choose to use vs = vC^), but this choice will lead to a well-known 

problem, termed "sensitivity to mismatch" by Cox [23]. Examples of this 

effect will be given in the next section. 

For the present study, it is assumed that it is adequate to establish a 

set of adaptive weights for which the GIR(vs, R, v<ag)) exceeds some 

minimal operation level, such as (say) 10 dB. Because of the relatively rapid 

convergence of this performance with the number of array snapshots, a 

reasonable bound on the adaptive receiver operating characteristic, may be 

obtained by evaluating the GIR for infinite data. In the examples in this 

report, a single interferer is placed A9 beamwidths from a desired signal and 

the locus of GIR = 10 dB for A9 versus desired array signal-to-noise ratio is 

used to predict limiting performance. 

14 



III. DESCRIPTION OF ALGORITHMS 

A.  Direction-Finding 

Many practical algorithms that simultaneously estimate the directions of 

several emitters generate a non-negative function called a DF spectrum from 

the available-array data. The domain of this function is the set of all 

possible directions, and the locations of its maxima (peaks) correspond to the 

estimated directions of arrival. Most algorithms require a covariance 

estimate, which is obtained from the array data. The covariance estimate is 

then transformed to produce the spectral estimate. 

For the purposes of this discussion, the covariance estimate may be taken 

to be the usual sample covariance matrix generated from K snapshots of data 

{xfc I k -  1, ..., R}, i.e., 

-  1 ^     H 
R * R I    *k *k 

k=l 

This estimate is generally positive definite provided the number of snapshots 

is not less than the number of array elements. 

Table 3.1 summarizes the type of transformation used by several of the 

currently most popular algorithms. In each case, the algorithm operates on 

the covariance estimate with the direction vector v(o) to generate the 

spectral estimate for the direction cu As can be seen, all of the DF spectra 

in table 3.1 require the computation of at least one quadratic form. 

For the case of a uniform linear array, any quadratic form 

g(a) = v (a) G v(a) 

may be interpreted as a "trig" polynomial,. provided G is a non-negative 

definite Hermitian matrix. The spectral factorization theorem allows us to 

represent g(o) by two ordinary polynomials, one with its roots inside the unit 

15 



TABLE 3.1 

DIRECTION-FINDING SPECTRA 

Adapted Angular Response 

vH(q) R"1 v(a) 

vH(a) R~2 V(O) 

Beam-Scan Algorithm (BSA) 

vH(a) R v(a) 

Maximum Entropy Method (MEM) 

constant      .   is the first coiumn Qf 

|vH(a) R_1 u.l the identity matrix 

Maximum Liklihood Method (MLM) 

 1  

vH(a) R"1 V(O) 

Multiple Signal Classification (MUSIC) 

1 ;  certain eigenvectors of R 
"~g     H  , are selected for the 
v (a) E^EN v(a)        columns of EN 

Thermal Noise Algorithm (TNA) 

 1  

vH(a) R-2 V(O) 

16 



circle and the other with corresponding roots outside the unit circle. 

Moreover,, if z is a root of one of these polynomials, then 1/z* is a root of 

the other. Either of these two polynomials completely characterizes an 

"all-zero" or finite impulse response (FIR) filter that produces a random 

process with power spectrum g(o) when excited with white noise. A process 

generated in this manner is sometimes called a moving average process. 

The beam scan algorithm (BSA) produces a spectral estimate consistent 

with a moving average process. All of the other DF spectra in Table III .A are 

characterized by a denominator polynomial except AAR, which has both a 

denominator and a numerator polynomial. The AAR spectrum is consistent with 

an autoregressive-moving average (ARMA) process. The linear filter required 

to synthesize an ARMA process has both poles and zeroes. Each of the 

remaining algorithms (MEM, MLM, TNA, and MUSIC) leads to a spectral estimate 

consistent with an autoregressive process. As one might expect, an 

autoregressive process is characterized by an "all-pole" filter. 

The beam scan algorithm actually provides the best possible estimate of 

the direction of arrival of a single emitter received in the presence of 

(spatially) white noise. In practice, one can expect the beam scan method to 

perform adequately so long as the emitters are all well isolated. Unfortu- 

nately, this approach breaks down completely when two (or more) emitters are 

separated by less than an array beamwidth. 

The beam scan algorithm is the DF equivalent of a standard technique used 

in classical time-series analysis. In many applications, a single record of 

data is Fourier transformed to obtain a rough spectral estimate called a peri- 

odogram. Averaging many periodograms yields a smoothed spectral estimate. 

The spectral resolution provided by this approach is limited by the length of 

the individual data records. Ouite analogously, the resolution of the beam 

scan algorithm is determined by the length of the array. 

The limitations of the traditional approach eventually led to fundamental 

investigations seeking spectral estimates with better resolution. Some of the 

more important results of these investigations are summarized as follows. 

17 



1. Maximum Entropy Method 

In 1967, John Burg [3] shook the foundations of traditional time-series 

analysis with his assertion that conventional spectral estimation techniques 

were fundamentally unsound. Burg was upset by the fact that, at the time, all 

recognized methods for computing a power spectral density implicitly truncated 

the correlation lags. As an alternative, Burg proposed his now famous 

••maximum entropy" spectral estimate. Although it may not have been widely 

recognized at the time, Burg was actually advocating that spectral estimates 

be derived within the framework of an autoregressive (AR) model for the time 

series [4]. 

In the usual time-series setting, maximum entropy spectral estimates are 

derived from a linear prediction error filter. The leading coefficient of 

this filter is unity, and the remaining coefficients are chosen to minimize 

its expected output power, usually referred to as the prediction error. The 

theoretical basis for this procedure is discussed in detail in Appendix B and 

the references therein. The desired filter coefficients are obtained by solv- 

ing the mixed system of linear equations 

Rw = [e 0 ... 0]T (3>1) 

for the prediction error e and the unknown elements of 

w = [1 ? ... ?]T  , 

where R is the theoretical covariance (matrix) for an arbitrary snapshot. The 

spectral estimate obtained from the solution to (3.1) can be written as 

i H    -1  2 

|vH(a) R \ 

18 



where uj. is the first column of the identity matrix.  Strictly speaking, 

this expression can only be interpreted as a maximum entropy spectral density 

in the ideal case of uncorrelated emitters and a linear array with uniformly 

spaced, omni-directional elements.  Much of the confusion in the literature 

concerning the maximum entropy approach (see, for example,  [5]) can be 

attributed to the prevailing uncertainty regarding the proper choice of a 

covariance estimate.  The elegance and efficiency of the well-known Levinson 

recursion [6] has prompted many researchers to force a Toeplitz structure on 

the covariance estimate.  The standard Yule^Walker method [7] leads to an 

estimate that is positive definite but badly biased, at least for DF 

applications.   The bias is easily removed, but only at the expense of 

destroying (with some non-zero probability) the desired positive definite 

property. Neither of these approaches is recommended when high resolution is 

important. 

Fortunately, the intrinsic (temporal) smoothing provided by a sample co- 

variance matrix is quite adequate for most direction-finding applications. Of 

course, sample covariance matrices are never Toeplitz (except by accident) 

and, if employed, one must then solve the linear prediction (3.1) without the 

help of a truly fast algorithm. However, in most DF applications, the data 

records (i.e., snapshots) are short and computational efficiency is relatively 

important. In the (rare) situations where the sample covariance approach is 

unsatisfactory, the problems encountered with the Yule-Walker approach can be 

circumvented by Burg's ingenious scheme for estimating reflection coefficients 

directly from the data. 
The standard time-series implementation of Burg's technique [8] is quite 

efficient, and a Burg filter always has the minimum phase property. This 

property guarantees a stable inverse but is seldom crucial except perhaps when 

one wishes to synthesize the input process. Moreover, the extended Burg tech- 

nique- [9] for processing multiple snapshots is not significantly faster than 

standard (e.g., Cholesky type) algorithms for solving the prediction (3.1) via 

the sample covariance method [10]. 
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2.  Maximum Likelihood Method 

In [11] Lacoss discusses the maximum entropy method (MEM) and another 

high-resolution spectral estimation algorithm attributed to J. Capon [12] 

called the maximum likelihood method (MLM). The basic idea behind the latter 

approach is simple. Weights for the array elements are chosen which insure 

unit gain in a given direction a while simultaneously minimizing the array 

output power. Under these conditions, the output of the adapted array pro- 

vides an unbiased, minimum variance estimate of the (desired) signal arriving 

from the specified direction. When the interference is Gaussian, the power 

out of the adapted array is a maximum likelihood, estimate of the power re- 

ceived from the direction ou 

In mathematical terms, the power out of the array can be expressed as 

P = wHRw (3.2) 

where w represents the array weights. Constraining the gain of the array to 

be unity in the direction a is achieved by demanding that w satisfy 

wHv(ct) - 1    . <3'3> 

Minimizing (3.2) subject to (3.3) is easily accomplished using the method of 

LaGrange multipliers. The optimum weights for this problem maximize the 

output signal-to-interference ratio (SIR) and are found by solving 

Rw(a) = X v(a) <3-4) 

where the Lagrangian A is chosen to satisfy (3.3). Pre-multiplying this 

equation by the Hermitian transpose of w(a), we find that the MLM power 

estimate and the Lagrangian are numerically the same. Replacing X with P in 

(3.4), solving for w(a), and substituting the result in (3.2) leads to the MLM 

power estimate 
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p. 
v ( cc) R v(. a; 

3. Adapted Angular Response 

The adapted array response (AAR) algorithm suggested by Borgiottia and 

Kaplan [13] can be interpreted as a variation on the MLM theme. As mentioned 

above, the MLM array weights maximize the output SIR. This fact remains true 

for any choice of the Lagrange multiplier. The AAR spectral estimate is gen- 

erated by scaling the MLM weights so that the sum of their squared magnitudes 

is some fixed value, e.g., 

|w(a)|2 = l    . <3'5) 

This modification leads to a DF method with the desirable property that the 

effect of white noise on the spectral estimate is (on the average) the same in 

every direction. Choosing the Lagrangian X to satisfy (3.5) instead of (3.3) 

leads to the AAR power estimate 

_ vH(cQ R~1v(a) 

***>  = vH(a) R-2 v(cc) 

4. Thermal Noise Algorithm 

As was mentioned above, the AAR power estimate has the same mathematical 

structure as an ARMA power spectral density. Generally speaking, an ARMA 

process can be represented by the cascade of an all-zero (FIR) filter and an 

all-pole filter. In [14], the point was made that a signal consisting of sin- 

usoids (i.e., plane waves) and additive white noise satisfies an ARMA-like 
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difference equation. However, the sinusoids in noise process is an extremely 

pathological case where the poles and zeroes lie on the unit circle and cancel 

exactly. Thus, the frequency response of the cascade is perfectly flat! The 

sinusoids arise from the transient response of the critically stable all-pole 

filter. This strongly suggests that the denominator (i.e., the AR part) of an 

ARMA spectral estimate suffices to determine the frequencies of the sinu- 

soids. Although the underlying reasons that motivated Gabriel [15] were un- 

doubtedly somewhat different, the thermal noise algorithm (TNA) uses only the 

denominator of the AAR spectrum, i.e., 

P, TNA   H, . .T-2. , . 
v (a) R via) 

5.  Multiple Signal Classification 

The Multiple Signal Classification (MUSIC) approach to direction-finding 

was first described in [16]. The theoretical framework behind the MUSIC algo- 

rithm [17] is quite general and substantially extends the pioneering harmonic 

retrieval method of Pisarenko [18]. 

The underlying assumption behind the MUSIC algorithm is that the number 

of emitters seen by the receiver is less than the number of antenna elements. 

Under this condition, the covariance matrix of the received signal 

H' S =E{sstt} 

is singular. Referring to (3.1), we observe that the null vectors of S 

theoretically provide a perfect mechanism for spatially extrapolating (i.e., 

"predicting") the received signal. Thus, one intuitively expects that the 

emitter directions could somehow be extracted from the null space of S. 
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The space spanned by the columns of S is referred to as the signal 

space. Except in certain pathological cases (i.e., perfectly correlated sig- 

nals), the direction vectors of the emitters will always lie in the signal 

space. On the other hand, an arbitrary direction vector will generally have a 

component in the (complementary) null space. Thus, a simple test based on the 

distance to the signal space determines whether or not an arbitrarily chosen 

direction is a possible emitter direction. 

Given an orthonormal basis for the null space, the Euclidian distance 

from an arbitrary vector x to the signal space can be easily calculated. The 

projection of x into the null space can be written as 

H 
*N = ENENX 

where the columns of EN are the (orthonormal) basis vectors for the null 

space. Consequently, the distance from x to the signal space is 

hi =(=V^)1/2' 

since 

¥N 

by construction. 

The MUSIC (pseudo) spectrum is defined to be the inverse of the squared 

distance from an arbitrary direction vector to the signal space, i.e., 

'MJSIC  vH(a)ENE«v(a) 
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In theory, the MUSIC spectrum becomes infinite at the true directions. How- 

ever, small errors in the null vectors or the direction vectors will almost 

surely prevent the denominator from vanishing entirely. Therefore, in prac- 

tice, the direction vectors that lie closer to the signal space than their im- 

mediate neighbors determine the MUSIC direction estimates. 

In an operational system, the MUSIC spectrum must be derived from a 

sample covariance matrix. The first step in the MUSIC algorithm is to deter- 

mine the standard eigenvalue (spectral) decomposition [19] of the sample co- 

variance matrix, i.e., 

R » EDE 

where E is a unitary matrix and Ü is a (positive) diagonal matrix. Post- 

multiplying by E, we immediately observe that the columns of E are eigenvec- 

tors of the sample covariance matrix, and the (diagonal) elements of D are the 

corresponding eigenvalues. Without loss of generality, we may assume that the 

eigenvalues have been arranged in descending numerical order. 

The signal space is specified by a simple partition of E, i.e., 

E - [Es | V    • 

At this point, the critical issue is the proper dimension of the signal 

space. If the number of emitters present is known apriori (never the case in 

practice), then the correct partition to employ is obvious. Given J emitters, 

ES consists of the first J columns of E. However, when the number of emitt- 

ers is unknown, a choice (for J) must be made based on the available data. 

Several methods for determining J from the eigenvalues have been examined. 

These algorithms perform a sequence of likelihood ratio (hypothesis) tests and 

select the smallest value of J that is statistically consistent with the em- 

pirical eigenvalue distribution. Simulations results and references for the 

various likelihood ratio tests studied thus far are presented in Appendix C. 

24 



6.  Rooting Methods for Linear Arrays 

The root-finding method discussed here applies to all-pole (autoregres- 

sive) spectra of the general form 

s(oO =    l 

vH(a) P v(a) 

where P is a non-negative definite MxM Hermitian matrix that generally depends 

on the sample covariance matrix in a nonlinear manner. For example, the MLM 

spectrum is obtained by choosing P to be the inverse of the (sample) 

covariance matrix. For the purposes of this report, we may restrict our at- 

tention to uniform linear arrays. In this special case, the direction vectors 

are specified in Section IV.A. However, the basic approach described here is 

easily extended to thinned (uniform) arrays with missing elements. 

A direct calculation shows that the inverse of the (autoregressive) 

spectrum defined above can be written as 

M-1 

S  =   ' £    p exp {-i 2irm 5<x}    » 
m = -M+l m 

where the mth coefficient is obtained by summing the elements on the mth diag- 

onal of P, i.e., 

1  V  « (3.6) 
Pm 

= M . f  Pkl 
k-l=m 

By introducing the change of variables 

z = exp { i 2TT ga} , (3-7) 
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the spectrum can be expressed in terms of the polynomial 

« i M_1 

„, v    M-l   r        -m 
P(z) = z     I p z 

m = -M+l  m 

Specifically, we have 

S = |p{exp {-i2i:5a}}|~1 

Clearly, the polynomial P(z) contains all the information in the spectrum. In 

fact, spectral peaks are a natural consequence of polynomial roots that lie 

near the unit circle. Hence, we are led to explore rootfinding as an alterna- 

tive to searching for spectral peaks. 

The Hermitian property of P insures that the polynomial coefficients in 

(3.6) satisfy the (harmonic) relationship 

P  = P -m   m 

Using this fact, it can be verified that: 

* 
If z is a root of P(z), so is 1/z  . 

m m 

In practice, exactly half the roots of P(z) will lie inside the unit circle. 

Direction (cosine) estimates can be derived from the roots by referring to 

(3.7), i.e., 

"    =    arg Zm 
°m    2TT 5 
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When the separation between adjacent elements is less than 1/2 wavelength, 

(i.e.", 5 < 1/2), the magnitude of an estimated direction cosine may be larger 

than unity. In this case, the estimate lies outside "visible" space and 

should be discarded. Naturally, other criteria can also be used to eliminate 

spurious estimates. For example, roots that lie close to the origin are pre- 

sumably of little interest, since they do not correspond to (significant) 

spectral peaks. In the case of the root version of the MUSIC algorithm, only 

the J roots closest to the unit circle are considered, where J is the (esti- 

mated) dimension of the signal space. 

B.  Power Estimation 

It is well-known that sampling of a time function introduces ambiguities 

in the resulting spectrum. Similarly, sampling the received wavefront on an 

aperture produces ambiguities in the resulting estimates of angle of 

arrival. The most familiar example is that of grating lobes which are 

produced when the elements of an array are spaced farther than X/2 apart. 

The ambiguity introduced by a grating lobe is fundamental; there is no way to 

determine from which of the two (or more) directions signals are arriving. 

The existence of ambiguities is a consequence of the linear dependence 

of direction vectors. For example, suppose there exist direction vectors 

VI, v_2, V3 such that 

av. + bv 2 + cv. = 0 

for some set of complex numbers (a,b,c), and that the signal is composed of 

sources from directions vj, V£ with complex Gaussian amplitudes A, B. If 

the correct directions are selected, the resulting signal-in-space covariance 

matrix is 

P  = E 
12 m * * 

(A B ) = 
0 

PT 
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The signal can be written equally well as 

r_ = (B - aA)v2 - bAy_3 

However, if directions v^ V3 are selected, the resulting signal-in-space 

covariance is 

P23 = E P;fl[(B-aA)* (-bA)*] = 
1 i2      * 

P-+ a P.  ab P. B  I  A      A 
* 

a bP, biV 

which is not diagonal.   The same is true if directions vj, V3, or vj, 

V),  V3 are chosen. 

Adaptive algorithms for estimating the direction of arrival of 

incoherent signals all operate on the principle of adaptive cancellation. 

They select a set (or sets) of weights to apply to the array data so as to 

minimize the output power from the array. Some sort of constraint must be 

imposed on the weights to keep them from going to zero; the algorithms differ 

mainly in their choice of this constraint. 

It is intuitively clear that the adapted array pattern (i.e., the array 

pattern using the adaptive weights) must have minimal gain in each of the 

source directions. These minima serve as estimates of the source 

directions. If vi» 32» Z3 are linearly dependent directions, and 

sources are present in directions vj, V2, the adapted pattern will have 

minima in all three directions. To determine the true source distribution, a 

power estimation algorithm which can handle linearly dependent direction 

vectors is needed. 

The usual method of power estimation requires that the candidate 

direction vectors be linearly independent. Then, knowing the noise power 

a2, one can operate on the true covariance matrix 
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R = a2I + VPVH 

and obtain 

'  p = (^V)"1 V11 (R - oh)  V (VHV)_1 (3.3) 

Of course, R is not known, so that sample covariance matrix 

1 v   ü S - TF I r_r_ N L —n-n 
(3.9) 

is used instead. If the direction vectors are linearly dependent, 

(-yHv)-l does not exist, and the method fails. 

There are a variety of ways to avoid this problem. Several are 

described in a recent paper by d'Assumpcao [20]. The technique discussed here 

is called least squares power estimation. 

The idea of least squares power estimation is to find positive numbers 

Pi» • • PL (and °2>  if the nolse power is not known) which minimize 

E = US - a2  I - VPVH|l,r (3.10) 

= Tr(S  -  cr2I - VPVH)H  (S  -  a2I - VPVH) 

= ZZ.   j(S  -  a2I - VPVH)..|2 

? 3E 
Assume first that a    is known»  Setting -=-= 0 for £=1,L, we obtain the 

1 *    ■ set of equations 

Note that -~-  (VP1T) = v^. 
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ij (S  -  ch)v_z = v* VPVH v£ 4=1 ,L 

H     |2 

1 P-I*J' m+1 

These equations may be written in matrix form as 

OP - b - a2c <3-"> 

where 

bi-i»^ (3-12) 

H (3.13) 
c4 = IA 

0      =  |A  I2 <3'14> 
\l      l^k-4! 

The   matrix   Q  can  be  written  as   a Hadamard  product.     The  Hadamard  product   of 

two matrices  is defined to be 

<A°   B)k, = ak£bk£ C3.15) 

With this  notation we  can write 

0 . v^   G   ^* (3.16)     _ 

30 



2 
where * denotes the complex conjugate. 

The solution of (3.11) is clearly 

_i     2 , (3.17) 
P = 0 (b - a c) 

In many cases, 0"1 exists even when (vHv)-l does not. 

When a2  is unknown, we first solve 

Ü. = -2 Tr (S - ah  - VPVH) = 0 
3 a2 

with the result 

a2 = I TR(S-VPVH) (3'18) 
M 

where M is the number of array elements (the dimension of S).  Substitution 

into (3.10) gives 

E = Tr(s . ah - VPVV (S - VPVH) 

= Tr(S - VPVV (S - VPVH) - ± Tr2(S - VPV*) 

Setting the derivatives equal to zero yields 

x pk(|^|2-i(^)^»"4<s-¥^   »-1-1 

k+l 

^ince VHV is Hermitian, we could equally well write 
0 = VHV x (V»V)T. 
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which can be written in the form 

The solution is, of course 

P = (0 4ccV(b-fc) (3.20) 

n      1   H If Q has an inverse, so does 0 - ^ £ £ . 

Unfortunately, (3.17), (3.18), and (3.20) do not guarantee positive 

estimates for the signal and noise powers. This reflects the fact that in the 

minimization, no constraint on the parameter values was imposed. If the 

minimization were done numerically by a nonlinear program, the constraints 

could easily be included. However, this would be computationally much more 

expensive than the simple unconstrained solution. 

The least squares power estimation technique eliminates spurious 

spectral peaks by producing small (perhaps even negative) estimates of the 

power associated with them; they can then be eliminated by a simple threshold 

test. The results of a Monte Carlo computer simulation comparing the direct 

method ((3.8), retaining only the diagonal terms) and the least squares method 

(3.17) are presented in Appendix D. 

C.  Weight Design Procedures for Adaptive Listening 

The problem of designing a set of optimal weights for an adaptive lis- 

tening array has been considered. This problem has been treated extensively 

in the past [21-28]. In these previous analyses, it has been assumed that the 

covariance matrix of the interference, or noise, can be obtained, or is 

possibly known, in the absence of the desired signal. However, in the present 

work, it is assumed that the covariance matrix of the signal plus noise is the 
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quantity which can be obtained. This assumption leads to great complications, 

as has been observed by Cox [23]. In particular, if an attempt 

is made to use this covariance matrix to design a set of weights, using the 

procedure which maximizes the signal-to-interference ratio (SIR), then the 

resultant processor will be extremely sensitive to the mismatch problem, 

i.e., the assumption about the angle of arrival of the desired signal. This 

particular design procedure is termed the Measured Covariance Method, and the 

weights are designed as 

WA = R"
1
 V A   x 

where Rx is the covariance matrix for the desired signal plus interference, 

discussed in Section II.B., and V is a steering vector which points in the 

estimated direction of the desired signal. 

A number of other design procedures were considered. The first method is 

termed the Model Covariance Method and the weights are computed as 

*c - < .1 VJ i+ Arl v*   • 
where J is the number of emitters, Vk is a steering vector which points in 

the estimated direction of the k-th emitter, a2 is the incoherent noise 

power, I is the L x L identity matrix. It is assumed that the desired emitter 

corresponds to the k-th direction. In practice, the steering vectors would be 

obtained from a direction-finding algorithm. 

An example of the problem of sensitivity to mismatch is shown in Figs. 

3.1a-b. A linear array of 10 elements is considered with an inter-element 

spacing of 0.5 wavelengths. The power levels of the desired and undesired 

emitters, relative to the background incoherent noise, is 26 dB and 40 dB, 

respectively, per array element. 
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Fig. 3.1.  Copy sensitivity to signal direction-of-arrival estimation errors. 
a) Typical beam patterns with emitter separation. 
b) Typical array output performance vs. emitter separation. 
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In Fig. 3.1a the beam patterns are depicted for the Measured Covariance 

Method and the Model Covariance method.  The directions of arrival of the 

desired emitter, and interference, are assumed to be 0 and 0.5 beamwidths, 

respectively.  The pattern for the sum beam, corresponding to a simple phase 

steering and then summing of the antenna element outputs, serves to define the 

natural beamwidth of the array as determined from the dimension of the array 

in wavelengths, which was discussed in Section II.B.  The pattern for the 

Measured Covariance Method, when there is no error in the estimated direction 

of arrival of the desired emitter, produces a null in the direction of the 

interference, but has a relative array gain of about 0 dB for the desired 

signal. However, if an error of 0.05 beamwidths is made, the pattern for the 

Measured Covariance Method produces a null in the direction of the desired 

signal.  The reason for this is that the design procedure treats the desired 

signal as interference, since its direction of arrival has not been specified 

precisely. The pattern for the Model Covariance Method under these conditions 

does not exhibit such behavior as seen in Fig. 3.1a.  This pattern produces a 

null in the direction of the interference, but passes the desired signal.  In 

essence, this behavior of the pattern occurs since the effect of the desired 

signal on the covariance matrix used in the design procedure has been 

eliminated.  Thus, the Model Covariance Method is relatively insensitive to 

signal DOA errors. 

The effect of emitter separation upon the sensitivity to mismatch problem 

is shown in Fig. 3.1b which depicts the output signal-to-interference ratio 

(SIR) in dB, vs. the emitter separation in beamwidths. The method for 

computing the SIR was discussed in Section II.B. The result for the sum beam 

shown in this figure indicates that the performance obtained with this method 

is not impressive when the magnitude of the emitter separation is less than 1 

beamwidth. However, optimal performance is obtained for the Measured 

Covariance Method when there is no error made in estimating the direction of 

arrival of the desired signal. If the emitter separation is 0.5 beamwidths, 

for example, then it is possible to obtain a depth of null of about 45 dB. 
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That is, the desired signal level can be raised from 14 dB below the 

interference to about 31 dB above the interference. Unfortunately, if an 

error of 0.05 beamwidths is incurred, then the performance of this method 

deteriorates seriously, as shown in Fig. 3.1b. However, the impressive 

performance is maintained by the Model Covariance Method under these 

conditions, as depicted in Fig. lb. These results indicate, once again, that 

the Model Covariance Method is not sensitive to the error made in estimating 

the direction of arrival of the desired signal. 

Another weight design procedure which has been considered is the Projec- 

tion Nulling Method. In this method the complex weights are computed as 

Wp = (I - vo^v)"
1^) vk 

where 

v = [vx k-1 k+1 ] 

It has been shown ([8], p. 141) that if the signal-to-noise ratio is large, 

then the Projection Nulling Method is equivalent to the Model Covariance 

Method. This theoretical result has been confirmed by computer simulations 

in the present study. As a consequence, the Projection Nulling Method has not 

been discussed in detail. As a final comment, it should be noted that since 

the Projection Nulling Method is equivalent to the Model Covariance Method, 

the former method is also not sensitive to the error incurred in measuring the 

direction of arrival of the desired signal. 

36 



IV. DESCRIPTION OF THE MONTE CARLO EXPERIMENTS 

A.  Direction-Finding Comparison 

A primary motivating factor behind this report is the desire to 

communicate the results of an extensive simulation of a number of potentially 

interesting direction-finding algorithms. These quantitative performance 

comparisons are presented, in their entirety, in Appendix. F. A conceptual 

flow diagram of the simulation experiments is shown in Fig. 4.1. 

The basic scenario for all of the experiments consisted of two 

independent emitters and a uniform linear array with ten omni-directional 

elements.  Adjacent elements were separated by 1/2 wavelength.  The only 

source of error was additive thermal noise at each of the array elements. 

The signals and noise were modelled as complex Gaussian variables as 

discussed in Section H.A.  Sample covariance matrices were generated using 

the Wishart technique described in Appendix E.  Since our antenna model 

exhibits perfect symmetry with respect to its geometric (phase) center, the 

sample covariance matrix was first processed using the forward/backward 

averaging technique described below.   Based on the resulting covariance 

estimate, tentative direction of arrival estimates were generated using one 

of the algorithms discussed in Section III.A.  The array signal-to-noise 

ratio (SNR) associated with each candidate direction was estimated using the 

direct method discussed in Section III.B.  All candidate directions with an 

SNR estimate less than 0 dB were discarded.   The remaining direction 

estimates were compared with the true directions.  Those direction estimates 

resulting in the smallest total (absolute) direction error were assigned to 

the true directions subject to the following provisions: 

1. A single  estimate  could not  be  assigned  to  both 
emitters. 

2. Assignments with an absolute direction error larger than 
a beamwidth were not permitted. 

3. An assignment was disallowed if the power estimate was 
10 dB larger than the true power. 
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Fig.   4.1.     Process  for  simulating super-resolution. 
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All unassigned estimates were counted as false alarms. An unassigned emitter 

was declared to he a miss. The emitters were said to be resolved if neither 

was missed. The probability of resolution and the false alarm rate were 

calculated based on 100 Monte Carlo trials. Second order statistics on the 

DF errors were also accumulated, conditioned upon successfully resolving the 

two emitters. 

During the course of the simulation study, the fundamental parameters of 

the system were varied in order to provide a better perspective on the 

relative performance of the algorithms. The sensitivity of the algorithms to 

thermal noise was tested by changing the number of snapshots used to 

construct the sample covariance. Three cases were considered, namely 10, 

100, and 1000 snapshots (looks). To assess the resolution limits of the DF 

algorithms, emitter separations of 0.1, 0.2, and 0.4 " beamwidths were 

considered. Initially, the relative power of the two emitters was 0 dB. 

. Subsequently, an identical series of experiments was conducted with the 

relative power set at -10 dB. In both cases, the array SNR of the desired 

(weaker) signal was varied from 10 to 50 dB in 5 dB steps. These parameter 

variations are summarized in Table 4.1. 

Table 4.1 
PARAMETER VARIATIONS 

SIR 

Emitter Separation 

Number of Looks 

Array SNR 

0, -10 dB 

0.1, 0.2, 0.4 beamwidths 

10, 100, 1000 

10, 15, ..., 45, 50 dB 
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The relative power of the desired signal to the interfering signal is called 

the signal-to-interference ratio (SIR). The emitter separation is specified 

in terms of the available beamwidth of the array, defined to be the inverse 

of the length of the array expressed in wavelengths. The desired signal was 

always located broadside to the array (i.e., o = 0), and the beamwidth was 

0.2 radians or 11.5 degrees. The number of independent (uncorrelated) 

snapshots used to construct the sample covariance matrix, denoted by K, is 

referred to as the number of "looks". If the receiver IF bandwidth is B and 

the data collection interval is T, then the number of looks is limited by the 

(time-bandwidth) product BT, i.e., 

K <  BT 

The array SNR is the total energy (in joules) received from an emitter in a 

single snapshot divided by the thermal noise level (in watts/Hz = joules). 

Note that the array SNR includes the signal gain available from the antenna. 

For the ideal ten element array considered here, the array SNR is 10 dB 

greater than the SNR on a single antenna element. 

Calculations of the array SNR are facilitated by scaling the direction 

vector v(a) to have unit norm. Moreover, it is usually convenient to choose 

the phase reference (center) to be at the geometric center of the array. 

Thus, the mth element of the normalized direction vector for an ideal array 

is 

<ct) = _1  exp {i 2Tr(m - M/2) £a}  ; m = 0, 1, ..., M-l    (4.1) v 
m     M 

where M is the number of array elements and E, (= d/X) is the element 

separation in wavelengths. One may easily verify that the direction vector 

constructed from (4.1) has the properties 

|v(a)|2 = 1 
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and 

v(cö = Jv*(a)    , (4*2) 

where J is the (usual) exchange matrix that reverses the order of the 

elements of a vector (see Appendix B). 

A vector that satisfies the relationship in (4.2) is said to be 

harmonic. A simple calculation reveals that every symmetric array with 

isotropic (i.e., identical) elements has harmonic direction vectors. In 

turn, the covariance matrix of the received signal, s = Vp (see Section 

II.A), satisfies a similar harmonic property, e.g., 

S = E{ssH} 

= VPV11 

* T 
= JV PV J 

* 
= JS J 

where P is a real diagonal matrix consisting of the emitter powers that would 

be measured at the array phase center. When a Gaussian signal with a 

harmonic (persymmetric) covariance matrix is received in Gaussian white 

noise, it can be shown [29] that the forward/backward averaged sample 

covariance matrix, i.e., 
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is a sufficient statistic for estimating any parameter of the (true) 

covariance matrix. Note that this (harmonic) covariance estimate is obtained 

by taking the arithmetic average of the usual sample covariance matrix and 

the (sample) covariance matrix constructed from reversed and conjugated 

data. All of the algorithms compared in this report derived their DF 

estimates from the covariance estimate in (4.3). 

Examples of the statistical data produced by the simulation are shown in 

Fig. 4.2. Each data point was calculated on the basis of 100 Monte Carlo 

trials. Smooth curves were fitted to the simulation data with a standard 

algorithm provided in the software package used to plot the results. For 

purely aesthetic reasons, the actual data points are normally suppressed. 

Perhaps the most important DF statistic is the probability of resolving 

two emitters. Generally speaking, most DF algorithms cannot reliably resolve 

closely spaced emitters at very low signal-to-noise ratios. However, as 

indicated by the example in Fig. 4.2, an algorithm's ability to resolve 

emitters improves rapidly once the SNR exceeds some critical threshold 

level. Below threshold, most algorithms erroneously report the presence of a 

single emitter at the "centroid" of the two emitters. At the two extremes, 

relatively few spurious estimates are generated. However, the transition 

from low to high probability of resolution is usually characterized by an 

increase in the" false alarm rate. Since an inordinately large number of 

spurious direction estimates would be undesirable, the average number of 

false alarms (per trial) for each of the algorithms tested has been plotted. 

Above threshold, the precision of the direction estimates is the primary 

measure of DF performance. In the statistical literature, an estimate is 

said to be efficient if its variance agrees with the Cramer-Rao bound. The 

example in Fig. 4.2 indicates that the DF algorithms are asymptotically 

unbiased (consistent) and efficient as the SNR increases. In fact, most of 

the algorithms become unbiased within a few dB of the -resolution threshold. 

Thus, the remaining issue is how quickly the direction error approaches the 

Cramer-Rao bound. The simulation data in Appendix F address these issues 

over the range of parameter values specified in Table 4.1. 
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The algorithms tested (see Section III.A) were AAR, MEM, MIM, MUSIC, and 

TNA. Data was obtained for both spectral and root versions of these 

algorithms. Since the root version of TNA is the same as the root version of 

AAR, only the results for the latter are presented. In several instances, 

the false alarm data for some of the algorithms (especially MUSIC) may appear 

to be missing.  In these case, no false alarms were observed. 

Occasionally, the standard deviation curve for an algorithm drops below 

the C-R bound.  Strictly speaking, the C-R bound plotted in the performance 

comparisons is valid only for unbiased and unexpurgated estimates.  The 

latter requirement means that, in every instance, direction estimates for 

both emitters must be generated in order to interpret the bound rigorously. 

As stated previously, the DF statistics presented in this report are 

conditioned on the emitters being resolved.  Near (or below) threshold, 

practical algorithms often fail to find both emitters and are usually 

biased.  Consequently, the C-R bounds are not strictly applicable except at 

high  SNR.    Moreover,  because  of  the  conditioning,  the  statistical 

significance of the average performance decreases as the probability of 

resolution drops. 

B.  Adaptive Nulling to Support Signal Copy 

1.  Overview 

The primary function of adaptive nulling of interference is to improve 

the signal-to-noise interference ratio (SIR) of the emitter selected for 

copy. For the case of multiple emitters separated by less than one beamwidth 

in azimuth angle, the adaptive nulling system must be able to place deep 

nulls, within the "main beam", on the interferers while maintaining 

sufficient gain on the desired signal to permit classification and/or 

monitoring. In order to properly support signal copy, the nulling system 

must increase the (presumably negative) SIR in each of the receiver channels 

to an output SIR of at least (say) +10 dB by a linear weighting of the 

receiver outputs. 

44 



As discussed in Section III.5, the two initial candidate nulling methods 

under investigation base their nulling weights solely upon the estimated 

directions and powers of all the emitters present. Therefore, either of 

these nulling techniques is potentially compatible with any of the techniques 

for super-resolution direction-finding. Since there are several performance 

measures which are appropriate to the evaluation of direction-finding 

algorithms and since the relative performance ranking of the various 

algorithms depended upon the specific performance measure selected, it was 

not obvious at the outset which combinations of DF methods vs. nulling 

algorithms would be most successful on the average. Thus, an initial 

standardized experiment was formulated to investigate the compatibility 

issue. 
The standard experiment which was used for the initial review of nulling 

alternatives was based upon the same 10-element, half-wavelength spaced array 

which was used for the initial direction-finding algorithm assessment (see 

Fig. 4.3 for a conceptual block diagram)..  Two emitters were modelled with 

the desired signal -10 dB in power relative to the interferer.  For each of 

the candidate pairings of the DF and nulling algorithms, two basic parametric 

variations were explored:  (1) the effects of sample-size and (2) the effects 

of residual calibration errors.  For all experiments, the criterion used to 

evaluate the relative performance was the same:  "what array signal-to-noise 

ratio (SNR) is required to achieve +10 dB output SIR as a function of emitter 

separation?"  As before, array SNR is measured relative to the weaker, or in 

this case desired, signal. 

2. Description of Simulation Output 

A typical summary plot, illustrating the comparison of several 

algorithms for a particular setting of the experimental parameters, is shown 

in Fig. 4.42. The shaded region in the corner of the plot indicates those 

combinations of array SNR and signal separation for which the indicated 

nulling technique (in this case the Model Covariance Method) would be unable 

to provide +10 dB output SIR, even if given perfect knowledge of all emitter 

hhe ARM, or Auto Regressive Root Method, algorithm shown in Fig. 4.4 is 
from [2]. Its performance is identical with the root variant of MEM when 
forward-backward averaging of the covariance matrix is employed. 
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directions-of-arrival and received powers. Thus, for example, at 0.1 

beamwidth emitter separation, at least 24 dB array SNR of the target emitter 

is required to support copy, according to this criterion. 

The curves in Fig. 4.4 correspond to different super-resolution 

algorithms In each case, the DF outputs were used by the nulling system to 

set up the weights for copy. The interpretation of the results is the same 

as for the "ideal direction-finding" bound: below and to the left of each 

curve it is not possible, on the average, for the indicated DF method to 

provide +10 dB output SIR when combined with the Model Covariance Nulling 

method. 

Using Fig. 4.4 as a reference then, we conclude that about 40 dB array 

SNR is required in order for MUSIC (with 20 snapshots of array data) to 

provide sufficiently accurate angle data on emitters to permit copy at 0.1 

beamwidth emitter separation, as compared with 24 dB for ideal direction 

finding, as described above. 

3. Details of the Experiment 

In order to evaluate the proposed performance criterion, separate Monte 

Carlo simulation experiments were performed for 45 pairs of emitter 

separations (0.05, 0.1, 0.2, 0.4, 0.8 beamwidths) and array SNR's (10, 15, 

20 25, 30, 35, 40, 45, 50 dB). The theoretically evaluated output power in 

the true signal "direction," including residual calibration errors, if any, 

were tabulated. The desired locus of +10 dB output SIR was obtained from a 

contour plotting program, based upon the rectangular array of output power 

data. 

For each setting of emitter separation and array SNR, a composite 

DF/copy experiment was performed as illustrated in the block diagram of Fig. 

4.3. This diagram depicts the flow of data during each of the 100 Monte 

Carlo trials over which the output SIR was accumulated. 

Given the positions and powers of the interferer and signal, the ideal 

signal covariance (uncorrupted by calibration errors) is first computed as 
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JL 3., 
R = P V(9 )VÜ(9 ) + PT V(8 )V (9 ) 

Next, using a random error vector, VE, having Gaussian phase and log-normal 

amplitude with the assumed standard deviations, the steering vectors are 

corrupted to reflect residual calibration effects, such as unmodelled 

near-field 'multipart, etc. This transformation is obtained by premultiplying 

the direction vectors with a diagonal matrix of the form 

*E 

j*i 
ale 

0 

3t 
a e 
n 

where aj, fe are the n pairs of amplitude and phase errors as selected 

above. Since the same calibration errors are assumed for both signal and 

interferer, the corrupted signal covariance is directly obtained by 

premultiplying by RE and post-multiplying by ^. Thermal noise of the 

required intensity is next added to the corrupted signal covariance to yield 

the true covariance of the signals in space, as observed through the system 

with residual calibration errors. 

Since the signal and the thermal noise are assumed gaussian conditioned 

on the steering vector errors, the Wishart density is appropriate for 

generating samples, given the assumed number of array snapshots. Note that 

this assumes that the measurement errors, although unknown, are constant 

during the sampling process. The sampled covariance matrix is then 

introduced to the chosen direction-finding algorithm, which yields 

angles-of-arrival and received powers for all of the emitters detected. 

Because the desired signal was always given a direction cosine algebraically 

lower than that of the interferer, the lowest detected direction cosine from 

the direction-finding algorithm was used by the copy algorithm as the 

estimated direction cosine of the signal. 

49 



Note that neither the DF algorithm nor the nulling algorithm is given 

knowledge of the corrupted steering vectors, so that both use ideal, 

linear-phase, constant-amplitude steering vectors. In order to determine the 

best nulling weights that can be obtained with the modelling errors present, 

therefore, the nulling algorithm is given the correct signal DOA's and 

powers, but again is not told of the direction vector errors. The "ideal 

direction-finding" curve in the Monte Carlo results represent a (generally 

unachievable) performance limit for nulling methods which model the received 

signals with erroneous steering vectors. Only in the limits of zero 

modelling errors and infinite array snapshots is this ideal performance bound 

achievable. 

The assessment of the output SIR is done with full knowledge of the 

corrupted signal steering vector, Vc(6a), .and the theoretical 

interference plus noise covariance matrix, 0C, with the corruptions 

present. Thus, if the candidate nulling algorithm yields the weight vector, 

W, then the output SIR in  the true signal direction is computed as follows: 

P 
SIR = — 

wHo w 
c 

2 

The above quantity is linearly averaged for the 100 Monte Carlo trials 

to obtain the performance" statistics for the overall DF/copy experiment. 

This measure may be interpreted as the average performance achievable by the 

calculated nulling vector when it is used with array data that are 

statistically identical to those used to determine the nulling weights. 
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V.  SUMMARY OF MAJOR FINDINGS 

A.  Direction-Finding 

One of the goals of the DF investigation was to determine what combina- 

tion of algorithms and system parameters are needed to achieve superresolu- 

tion, somewhat arbitrarily defined here as the ability to resolve emitters 

separated by only 0.1 beamwidth. In theory, superresolution is possible but, 

in practice, may require extremely high signal-to-noise ratios and/or large 

numbers of looks (snapshots). The simulation results presented in Appendix F 

serve to quantify these requirements for a number of interesting algorithms. 

For example, an examination of the data in Fig. 5.1 indicates that 

superresolution is difficult to achieve with spectral-type algorithms given 

only a modest amount of data (i.e., 10 looks). However, with more data, the 

situation is not nearly so bleak. Given 100 shapshots, the performance data 

in Fig. 5.2 show considerable improvement in most of the algorithms, par- 

ticularly MUSIC. Increasing the number of looks by yet another order of mag- 

nitude, the results in Fig. 5.3 clearly indicate that MUSIC is asymptotically 

much more sensitive than any of the other algorithms tested. 

The general trend of the data suggests that the error in the MUSIC di- 

rection estimate approaches the Cramer-Rao bound as either the SNR or the 

number of looks becomes sufficiently large. In other words, MUSIC appears to 

be asymptotically efficient. However, the relatively poor sensitivity of 

MUSIC in the data-limited (10 snapshots) case is somewhat disappointing. 

In Fig. 5.4, the 10 look experiment has been repeated with the emitter 

separation increased by a factor of two (i.e., 0.2 beamwidth separation). We 

again see that spectral MUSIC is noticeably less sensitive than some of the 

other algorithms (esp., MEM and AAR) in terms of its ability to detect the 

presence of both emitters at low SNR. This trend continues to exist even at 

0.4 beamwidth separation (see Fig. 5.5). However, in spite of its relatively 

poor sensitivity, MUSIC is generally superior in terms of producing more 

accurate estimates than any of the other spectral algorithms. Of course, the 

SNR must be sufficiently large to allow MUSIC to resolve the two emitters. 
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The sensitivity of MUSIC and, in fact, all of the algorithms tested, is 

improved considerably by adopting the root-finding approach discussed in Sec- 

tion III.A.  Even when limited to only 10 looks, all of the root-type algo- 

rithms are capable of resolving two emitters separated by 0.1 beamwidth at 

reasonable signal-to-noise ratios (see Fig. 5.6).  Although MUSIC again ap- 

pears to be less sensitive than its competitors, this slight disadvantage xs 

relatively insignificant in view of the bias results.  As the number of 

available snapshots is increased, the difference among the root versions of 

the DF algorithms become even less important.  At 100 looks, the sensitivxty 

of all the algorithms is comparable (see Fig." 5.7). However, MUSIC retains a 

discernible advantage in terms of accuracy.  Also significant is the smaller 

bias and lower false alarm rate exhibited by MUSIC. 

B.  Adaptive Copy 
Since it was not known in advance what the tradeoffs were in combining 

the proposed Model Covariance Method or the Projection Nulling Method with 

the various direction-finding techniques, all combinations were tried.  For 

the adaptive copy experiement defined in Section IV.B, the copy algorithm 

assumed that the lowest detected direction cosine was that of the desxred 

signal. Thus, the assumed direction-of-arrival could be far removed from the 

actual direction-of-arrival whenever the direction-finding algorithm failed 

to resolve the two emitters.   For this reason, one might expect the 

direction-finding algorithms having the best probability of resolution to 

give the best copy performance.  This was found to generally be the case for 

both spectral and rooting algorithms, as can be seen by comparing Fig. 5.8 

to Fig. F-19, Fig. 5.9 to Fig. F-21, and Fig. 5.10 to Fig. F-20.  For the 

rooting algorithms, this observation tends to hold only for those values of 

array SNR above that value where the roots cross in angle (a dip in the 

resolution probability often occurs at that SNR, as can be seen in Fig. 

F.20). 
By comparing Figure 5.10 to Figure 5.8 and Figure 5.11 to Figure 

5.9,  we  see  that  the  rooting  variants  of  the  direction-finding 
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algorithms again offer significantly superior performance. This again 

implies that exploitation of the array structure is desired in order to 

achieve the best results. 

The above results indicate that the modeling techniques which steer 

nulls to perform copy offer nearly optimal performance in the case that the 

array is perfectly calibrated for plane wave direction finding. • On the other 

hand, if small gain and phase errors are introduced randomly into each 

receiver channel, independent of direction-of-arrival", there results a 

significant loss of superresolution copy performance, as seen in Fig. 5.12. 

This result implies that null steering is an unacceptable approach for 

obtaining superresolution copy. Techniques which exploit the signal space 

decomposition employed in SVD-type direction-finding algorithms to overcome 

this deficiency are being studied as alternatives and will be reported in a 

future phase of this study. 

C.  Conclusions 

Noise cancellation by singular-valued decomposition is a necessary 

prerequisite to superresolution (e.g., less than 1/10 beamwidth). 

Exploitation of regular array structures (e.g., linear arrays) is necessary 

to optimize resolution sensitivity and accuracy of estimates with small 

amounts of data. *rray errors due to, for example, calibration residuals, 

cause significant degradation of superresolution performance and copy. 

Methods based upon open-loop null steering cannot provide superresolution 

performance based upon array information which is only slightly in error 

(e.g., 5° phase and/or 0.5 dB amplitude errors per element). 

Because of the above conclusions for the initial phase of the study, 

focus for subsequent phases has been directed toward SVD-type algorithms, 

both for direction-finding and copy, and robust extensions to desensitize 

performance to array errors. 
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Fig. 8.  Adaptive listening with spectral superresolution 
algorithms and 20 array snapshots (contours of 10 dB output 
SIR with -10 dB input SIR). 
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Fig. 5.9.  Adaptive listening with spectral superresolution 
algorithms and 100 array snapshots (contours of 10 dB output 
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Appendix A 

CRAMER-RAO DIRECTION-FINDING BOUNDS FOR GAUSSIAN SIGNALS 

1.  GENERAL DISCUSSION 

Detailed treatments of the multiparameter Cramer-Rao bound are readily 

available in the engineering literature (e.g., see [30]). For our purposes, 

the fundamental theoretical result may be stated as follows: 

Consider a probability density function p(r| ) that governs a probabil- 

istic mapping from a parameter space    into an observation space r . The 

basic problem is to estimate the (vector) parameter 9 from the (vector) ob- 

servation r.  The Cramer-Rao bound. asserts that the covariance matrix of any 

unbiased estimate of 8 must satisfy 

Cov (9) > F"1 

where F is the Fisher information matrix with elements 

TO       n 

= _F ; i!l2_P }   . (A.D b   i 36 39  ; 

m n 

Of course, the expected value operation is defined in terms of the given 

probability density function (pdf), i.e., 

E {x} = / x(r) p(r| 9) dr 

Situations frequently arise where one is primarily interested in a subset of 

the unknown parameters. The remaining "nuisance" parameters are only impor- 

tant to the extent that they adversely affect estimates of the "desired- 

parameters.  By simply partitioning 9, i.e., 
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8 = [■ a I ß ] 

the Fisher matrix may be written as 

F = 
F   F 
act  aß 

F   F 
ßa  ßß 

If the Fisher matrix has an inverse, it may be written as 

-1 
-1„       ,-1 

[ Fcta " FaßFßßFßa ] 

[F 
ßß 

F    F    F     1 ßa aa aßJ 
-1 (A.2) 

The remaining (off-diagonal) terms can be easily obtained but are not needed 

here. 

If the nuisance parameters (e.g., ß) were known, the Cramer-Rao bound 

for an unbiased estimate of the desired parameters (i.e, a) would be 

Cov (a) > F 
aa 

This inequality is always valid but the bound obtained from (A.2) is tighter, 

i.e., 

Cov(a)> iF^r1!*^ 

where the "reduced" information matrix is 

F^ = F  - F F F 
aa    aa   aß ßß ßa 
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In the following sections, it will be convenient to use the notation 

F .  = (F  ) a b     ab tun 
m n 

to refer to an arbitrary element of a Fisher submatrix. 

2.  STATISTICAL INFERENCE BASED ON COMPLEX GAUSSIAN OBSERVATIONS 

Consider a complex Gaussian vector r with zero mean, i.e., 

E {r} = 0 

and circular components, i.e, 

E {rrT} = 0 

and covariance R, i.e., 

E {rrH} = R    . 

Note that a superscript T indicates the usual (real) transpose operation, 

whereas an H represents the complex conjugate (Hermitian) transpose opera- 

tion.  The unknown parameters 9 are imbedded in the covariance, i.e., 

R = R(9) . 

Assuming the covariance matrix R is positive definite, the complex multivari- 

ate Gaussian pdf [31] is given by 

p(r| e) = _J_ exp { -v\~  r } 
T R 
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where L is the dimension of r and |R| denotes the determinant of R. By in- 

troducing the sample covariance matrix 

R = i I r(k)rH(k) 
• K k=l 

the logarithm of the pdf for K statistically independent observations can be 

written as 

in p({r(k)|k=l,...,K}|e) = -K [Tr {R"1 R} + In |R| + L In »] 

where Tr { } is the standard trace operator.  In arriving at this result, use 

has been made of the identity 

Tr {AB} = Tr {BAI    . (A*3) 

In the next  section,  we will also have occasion to use 

Tr   {AH} - Tr*{A} , ^ 

where a superscript asterisk (*) denotes the complex conjugate operation. 

As indicated by (A.l), an arbitrary element of the Fisher information 

matrix can be determined by calculating 

F   = _E { i!iE_E_ } 
m n        m  n 

Invoking the differential rules [32] 

d R-1 = -R-1 dR R-1 <A'5) 
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and the less  familiar 

d In  |R|   = Tr   { R"1 dR   } 

we first obtain 

liSLE. . K Tr   { R"1 -U (R_1 R " I)   } 
36m 36ni 

Since   the   sample   covariance   matrix   is   always   an   unbiased   estimate   of   the 

actual covariance,  i.e., 

E   {R} = R 

it follows  that 

E ileTr t "KTr 1R    le w   R * 
m    n m    n 

„. _     ,  1  3R_1 i 

m    n 

Thus, the number of observations enters the result only as a multiplicative 

constant. Since no loss of generality is incurred, the simplifying assump- 

tion K=l is imposed at this point. Applying (A.5) once more and ignoring K, 

we finally obtain the desired result in a suitable form for subsequent 

calculations. 

F    =Tr liB-R"
1 -I-*"1}    . (A.6) F9 e    { TT* To*   ; 

m n        m     n 
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3.  APPLICATION TO DIRECTION-FINDING 

For the direction-finding (DF) problem posed in Section II.A of this re- 

port, the covariance matrix of the observed vector (snapshot) r can be writ- 

ten as 

R = APAH + N 

where the unknown directions 

T 
a = [ a. cu   ... Oj ] 

enter the problem through the direction matrix 

A = [ aCo^) | ... | a(aj) ] 

The only requirement imposed on the (vector) array gain a( a) is that it pos- 

sess a derivative in the usual sense, i.e., 

•  da 
a = -r- da 

is assumed to exist at every direction a. The matrix constructed from the 

derivatives of the array gain at each of the unknown directions is written as 

A = [ aCotj) | ... | ä(aj) ] 

The "signal-in-space" covariance matrix P may be interpreted in terms of the 

pairwise correlations that would exist among the J signals at some convenient 

reference point on (or near) the array. Unfortunately, the general problem 

where P is totally unknown soon becomes overwhelming as the number of signal 
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directions increases. Thus, we first consider the ideal case of known ?. We 

then treat the important case where P is an unknown diagonal matrix. Since 

the signals transmitted by two emitters are normally uncorrelated, the latter 

assumption is quite reasonable for a large class of DF problems. 

The noise covariance matrix N is assumed to be non-singular and known. 

Under these conditions, the general problem is easily converted via a linear 

transformation to the special case where N is the identity matrix, i.e., 

N —> I 

Under this transformation, the direction matrix becomes 

A —> V = N 1/2 A 

and similarly, 

A->V = f1/2A    . 

The covariance matrix for the transformed problem is 

R = VPVH + I 

Our results are somewhat easier to interpret if the inverse covariance matrix 

is expressed in the form 

R-l = I - VOVH    . (A.7) 

A direct calculation shows that Q is the (Hermitian) solution to 

P - 0 = PWQ = OWP (A.8) 
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where we have introduced the Gramian matrix 

w - vHv   . (A'9) 

The uniqueness of the representation in (A.7) follows from the fact that 

I + PW is a non-singular matrix. The proof is by contradiction, i.e., sup- 

pose there exists a non-zero x such that 

(I + PW)x = 0 

Preraultiplying this equation by V, it follows that 

(I + VPVH)Vx = 0 

Since R is obviously non-singular, it follows that Vx = 0.  In turn, Wx = 0 

and hence the contradiction (x = 0). 

Thus, 0 may be written explicitly as 

0 = (I + PW)_1P = P(I + WP)"1 

If P is positive definite, we also have 

0 = (P-1 + W)"1 

In the ensuing development, we make extensive use of the notational device 

j    = Ü ' (A.10) 
i ' 3a. 

3 
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for the partial derivative of the direction matrix V with respect to an un- 

known direction. This derivative can be extracted from the matrix of deriva- 

tives defined previously, i.e., 

V. = V e.eT    , CA.ll) 
.3     3  3 

where the unit vector ej is the jth column of the JxJ identity matrix. 

Using (A.10), we first write the partial derivative of the covariance 

matrix with respect to the jth direction as 

» . V.PV11
 + VPVH 

3a.   3 3 

Substituting this expression in (A.6) and expanding terms, we get 

F    = Tr { V PVH R_1 V PVH R_1 } + Tr { V PVH R_1 VPV* R_1} 
a a        m       n m Ll 

m n 

+ Tr { VPV* R"1 V PV11 R'1 } + Tr { VPV* R*1 VPV* R"1 } . (A.12) 1   m     n m      n 

Since R and P are Hermitian, it follows from the identities (A.3) and (A.4) 

that the last term on the right-hand side of (A.12) is the complex conjugate 

of the first term. Similarly, the second and third terms form a conjugate 

pair. Further simplifications result from substituting (A.11) and arranging 

terms, with the help of (A.3), to obtain scalar expressions within the 

braces.  In this manner, we eventually arrive at 

F = 2 Re   { eW^e eTP vV^e    + eWSt ^eeW^e     }   ,   (A. 13) a a ln mm nn mm n 

where Re {x} denotes the real part of x. 
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At this point, it is convenient to introduce the Hadamard product ADB 

of two matrices, defined by 

(ADB)  = A B ^ LJ ran   ran ran 

for any two matrices with the same dimensions.  Unlike the usual matrix 

product, the Hadamard product is commutative, i.e., A[]B = B[]A.  Since 

(ATDB)  = AB v  *-" ran   nm ran 

the Fisher (sub)matrix with elements specified by (A.13) can be written as 

F  = 2 Re {(PVV^DCPVV1^) + (PvVWü (VHR_1V) }  (A.14) 
aa 

The matrix expressions that appear in this result can be simplified 

considerably by using (A.7), (A.8), and (A.9), e.g., 

PV^^VP = PVH(I - V0VH)VP 

= (P - PWO)WP 

= QWP 

= P-0   . (A-15) 

Similarly, 

PvV1^ = PAI " VOVH) V 

= (P - PWO) v11^ 
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= ow (A-16) 

where, in the last step, we have introduced 

W = vH 

despite the apparent abuse of notation. Consequently, we may also write 

vV^ = vH(i - vovH) V 
= ^v - wV- 

Substituting these identities in (A.14), the final form of the Fisher matrix 

for the unknown directions a emerges as 

F  = 2 Re {(P-O^öC^V - wV) + (QW)
TD(QW) } 

act 

In order to proceed without undue difficulty, we now assume that the 

signal-in-space covariance P is a positive (definite) diagonal matrix and, 

accordingly, introduce the nuisance parameters 

S. = In P.. 
3 33 

The partial derivatives of the covariance matrix R with respect to the 

nuisance parameters are given by 

3.  = v -£. vH 
3ß.    36. 

T H 
= P  Ve.e.V 

33       3   3 
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It follows easily from (A.6) that 

T n —i       T H —1 i 
F    = Tr { P Ve e V R  P Ve e V R   } 
8 ß      l mm m m nnnn 
m n 

= P    eTVHR"IVe    P    eTVHR XVe 
mm m n    nn n m 

Since 

(DA)      = D    A mn      ' mm nm 

for any diagonal matrix D, we may write the submatrix for the nuisance 

parameters as 

F  = (PvV^) D (PV^^V)
1 

PP 

From the development in  (A. 15), we deduce  the identity 

P^R^V = OW , (A-l7> 

which yields 

FaQ = (OW)  D   (ow)T 

PP 

The  calculation of   the  coupling matrix  proceeds  along similar  lines,   e.g., 

m     r    -1 3R    D-l 3R   I 
F„        =Tr{R -^R "3r  I g  a l 3ß 3a m n m n 
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= Tr   { P    R-1Ve e^V1   (V PVH + VPV*J)   } 1    mm m m n ri 

= 2 Re   { P    eVlT1^ eV^Ve     } 1    mm m n    n m 

Consequently,  the information coupling between the directions and the 

nuisance parameters is determined by 

FQ = 2 Re { (PVV1^) Q (FvW } 

Simplifying with (A.16) and (A. 17) yields 

F„ = 2 Re { (OW) 0 (QW)T } 

Finally, since a Fisher information matrix is symmetric, it follows that 

T 
F  = F 

ccg   Sa 
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Appendix B 

LINEAR PREDICTION AND MAXIMUM ENTROPY SPECTRAL ANALYSIS 

Maximum entropy spectral analysis is closely linked to one of the more 

fascinating questions in time series analysts — given a record of the past, 

how well can one predict the. future? Differences of opinion concerning such 

matters are what horseracing is all about; however, within the relatively 

orderly realm of stationary random processes, the theory of linear prediction 

offers a fairly complete answer. The discussion in this appendix covers most 

of the salient points of this theory for complex-valued processes. 

1.  LINEAR PREDICTION 

Let e(n) denote the minimum mean square error that can be achieved by 

linearly combining the n most recent observations of a zero-mean, stationary 

complex random process in order to predict its next value. Intuitively, one 

would expect the prediction error to decrease as the number of available ob- 

servations increases. Indeed, it is a well-known fact that the prediction 

error satisfies a recursive relationship of the form 

e(n) = [ 1 - |k(n)|2l e(n-l) (B-D 

where k(n) is the nth (complex) reflection coefficient of the process. Since 

the prediction, error is always non-negative, the magnitude of a reflection 

coefficient can never exceed unity. Unless otherwise explicitly stated, per- 

fectly predictable (i.e., degenerate) processes are excluded from considera- 

tion in order to obtain the strict inequality 

|k(n)| < 1 (B.2) 

Makhoul [10] has emphasized the equivalence between the reflection coeffi- 

cients of a process and its correlation coefficients.  Unless a process is 
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degenerate, the first n correlation coefficients uniquely determine the first 

n reflection coefficients and vice versa. This statement also holds for de- 

generate processes provided e(n-l) > 0. 

Reflection coefficients provide an extremely convenient way to generate 

prediction filters recursively. Let the vector w(n) denote the weights of 

the nth order prediction error filter based on the n most recent observa- 

tions. As shown in Fig. B.l, a prediction error filter is constructed by 

subtracting the output of the corresponding prediction filter from its in- 

put. Given the filter weights obtained at the (n-l)st stage of the recur- 

sion, the nth order weights are completely determined by the nth reflection 

coefficient. This relationship may be stated as 

w(n) = w+(n-l) - k(n) J w*(n-l) <B-3> 

where the subscript "+" denotes a vector which has been extended by appending 

a trailing zero, e.g., 

[a b]+ = [a b 0] 

and J is the appropriate exchange matrix that simply reverses the order of 

the elements within a vector. For example, the 3x3 exchange matrix is 

J = 
0 0 1 
0 10 
1 0 0 

and 

[a b c] J = [c b a] 

The self-inverting property of exchange matrices, i.e., 
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J2-I 

is often useful. 

The prediction error filter of order zero has no memory, and the recur- 

sion in (B.3) begins with w(0) = 1. Actually, the leading element of w(n) is 

always unity — a consequence of the"direct signal path in the block diagram 

defining the prediction error filter (see Fig. B.l). A more noteworthy ob- 

servation is that the last coefficient of the nth order prediction filter is 

the nth reflection coefficient. This interesting property enables one to re- 

construct the first n reflection coefficients from the nth order linear pre-. 

diction (LP) filter. The procedure for accomplishing this task is essen- 

tially the same as the famous Schur stability test [33]. The key here is to 

realize that w(n-l) can be obtained directly from w(n), e.g., 

w+(n-l) = (1 - (kCn)]
2)"1 [w(n) +k(n)Jw*(n)] 

follows easily from (B.3) 

Of course, the coefficients for a prediction error filter may be 

obtained directly by minimizing its expected output power. In order to 

pursue this (equivalent) approach, let the vector r represent an arbitrary 

segment of the observed process. The covariance (correlation) matrix of r is 

usually written as 

R = E{rrH} 

where a superscript H denotes the complex conjugate (Hermitian) transpose 

operation. The response of a finite impulse response (FIR) filter to a seg- 

ment of the process can be written as 

y = w Jr 
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where w represents the coefficients (impulse response) of the filter, and the 

superscript T denotes the usual (real) transpose operation. 

The minimum mean square prediction error is 

e = min E{|y| .} 

TmT * (B.5) 
= min w JRJ w     , 

where the minimization is over all w with a leading coefficient of unity. 

When the observed process is statistically stationary, R is a Toeplitz 

matrix of (complex), correlation coefficients, i.e., 

R  =E{rr*} 
ran     m n 

(B.6) 
m-n 

Since a covariance matrix is always Hermitian, the correlation coefficients 

(lags) must also satisfy 

* (B.7) 
c-n = C n   * 

Finally, without suffering any significant loss of generality, we may 

restrict our attention to normalized processes with unit variance, i.e., 

c0 = 1 

Given (B.6) and (B.7), it is a relatively trivial exercise to show that R has 

the (harmonic) property 
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JRJ = R*    . (B-8) 

Substituting (B.8) in (B.5), the linear prediction problem may be stated as 

follows. Find the filter weights which achieve the minimum mean square error 

e = min w tlw    , 

subject to the constraint 

[1 0 ... 0] w = 1 

This constrained minimization problem is easily solved using the method of 

Lagrangian multipliers. A complete solution is obtained by solving the 

(mixed) linear system of equations 

Rw = e [1 0 ... 0]T    . <B-9> 

Thus, the first n lags of a stationary process determine the nth order pre- 

diction filter. The following argument establishes the converse. 

Using the method of bordering, it can be shown [34] that (B.l) and (B.3) 

solve (B.9) recursively. For non-degenerate processes, the nth reflection 

coefficient is 

k(n) = cT(n)Jw+(n-l) / e(n-l) (B.10) 

where the vector 

T 
c(n) = [1 c. ... c ] 

is constructed from the first n lags. 
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Given a prediction error filter w, we may (now) invoke (B.4) to generate 

all the lower order prediction error filters. Following Burg [35], we con- 

struct a lower triangular matrix L, column by column, from the weights for 

the error filters of order n through 0. Since the first n reflection coef- 

ficients can be extracted from L, e.g., 

[0 ... 0 1] L = I-k(n) ... -k(l) 1] 

we may compute the corresponding prediction errors from (B.l), starting with 

e(0) = 1. The prediction errors are placed along the main diagonal of a 

(diagonal) matrix D in order of increasing value. 

By taking advantage of the Toeplitz structure of the correlation matrix 

R, the prediction error filter Eq. (B.9) can be generalized to 

RL=UD <»•"> 

where U is an upper triangular matrix (to be determined). By construction, 

the main diagonals of L and U consist of all "l"s. Pre-multiplying (B.ll) by 

the Hermitian transpose of L, we obtain 

h^SL = AD 

= DUHL    . <3-12> 

Since the product of two lower (upper) triangular matrices is also a lower 

(upper) triangular matrix, the left-hand side of (B.12) is both an upper and 

a lower triangular (Hermitian) matrix, i.e., a real diagonal matrix. It fol- 

lows that 
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is a real diagonal matrix with "l"s along the main diagonal (i.e., an iden- 

tity matrix). Therefore, U is the inverse of the Hermitian transpose of L, 

and consequently, the correlation matrix R is given by 

R = iT^ L"
1 - UT)UH    . <B'13> 

Since L and D were constructed from the prediction error filter w, we may 

conclude that the nth order LP filter for a stationary process uniquely spec- 

ifies the first n lags of the process. 

If the determinant of the nxn correlation matrix R is written as d(n), 

it follows from (B.13) that 

n 
d(n+l) = n e(k) 

k=0 

or equivalently, 

e(n) = d(n+l)/d(n)    . (B*1A) 

2.  MAXIMUM ENTROPY SPECTRAL ANALYSIS 

The "ratio of determinants" formula ultimately enables us to relate the 

error in predicting a process, given its entire past, to the entropy of the 

process. Taking the limit of (B.14) for arbitrarily large n and applying a 

well-known theorem from real analysis [36] yields 

e(°°) = lim e(n) 

= lim d(n+l)/d(n)  . 

= lira In  d(n)]1/n 
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Taking the logarithm of both sides leads to 

In e(-) = lim (1/n) In d(n)    . (B*15) 

Although it is not essential for this discussion, the right-hand side of this 

result can be expressed in closed form, e.g., see [37], 

■n 

lim (1/n) In d(n) = (1/2TT)  / In SCO du,    . (B.16) 
-ir 

where 

S(ü,) = 1 + 2 I    c cos no. 
n=l n 

is the true power spectral density of the process (i.e., the Fourier series 

of the correlation coefficients). The absolute integrability of In S(o-) is 

known in the literature as the Paley-Wiener condition. The right-hand side 

of (B.16) is sometimes referred to as the entropy (rate) of the power spec- 

tral density S(ü,). 
The entropy of a random vector r with probability density function p(r) 

is defined to be 

h = E { -In p(r) } 

In particular, the entropy of an n-dimensional circular (complex) Gaussian 

vector with covariance R is given by [see Appendix A, section 2]. 

h(n) = n (1 + In ir) + In |R|    . (B-17> 

Thus, the average entropy per observation of a stationary complex Gaussian 

process is 
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<h> = lim (1/n) h(n) 

= 1 + In IT + lim (1/n) In d(n) <B'l8) 

Setting n = 1 in (B.17), we note that the entropy of a circular Gaussian 

random variable with unit variance is 

h = h(l) 

-1+IB,      . (B'19) 

Substituting (B.15) and (B.19) in (B.18), the relationship between the 

entropy (rate) of a complex stationary Gaussian process and its optimum 

prediction error emerges as 

<h> = h + In e(-)    . (B*20) 

Thus, the greater its entropy (i.e., disorder), the more difficult a process 

is to predict. 
At this point, we are to consider the class of processes that share the 

same given set of N initial lag values. Of course, every process in this 

class has the same prediction error based on the N most recent observations. 

Given additional (older) observations, the worst conceivable situation is for 

the prediction error to remain constant. The implication of this rather 

pessimistic assumption is that the additional observations are absolutely 

useless. 
Pessimistic or not, the situation described above is a legitimate model 

and corresponds to choosing the (unknown) reflection coefficients to be 

identically zero for n > N. For this model, we have 

e(~) = e(N) 
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and, in light of (B.20), the average entropy is clearly maximized. Moreover, 

(B.3) shows that the Nth order maximum entropy model has the property that 

its optimum prediction filter, based on the infinite past, is the same as its 

Nth order prediction filter. 

One of the most important consequences of the orthogonality principle 

[38] is that the output of an optimum prediction error filter is a white 

noise process. Consequently, a statistically equivalent input process can be 

generated by driving the inverse of the optimum error filter with white 

noise. Referring to Fig. B.l, elementary linear systems analysis shows that 

the required inverse can be constructed using the simple feedback arrangement 

depicted in Fig. B.2. Since the maximum entropy error filter has a finite 

memory (impulse response), its inverse is an all-pole filter. Thus, the 

critical assumption behind the maximum entropy method is that the observed 

time series is an autoregressive process. 

The validity of the autoregressive assumption is an issue far beyond the 

scope of this report. Ultimately, a preference for one model over another 

should be based on empirical considerations. Deliberations about such mat- 

ters could perhaps be made more meaningful by the intelligent application of 

statistical hypothesis testing techniques [30]. 

The point to be made here is that the maximum entropy method (MEM) al- 

ways leads to legitimate spectral estimates. An MEM spectral estimate takes 

the form 

s u) = £  <B-21) S
MEM^; N 

I 1 + y w exp(-inü-) 1    nil n 

where the coefficients are obtained from the underlying LP filter 

T 
w = [1 w. ... w ] 

1     n 
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and e is the corresponding prediction error. In the traditional Blackman- 

Tukey approach, a spectral estimate is derived from N lag estimates by com- 

puting the (truncated) Fourier series 

N 
S((t) = 1 + 2 t c cos no,    • (3.22) 

n+1 ° 

Unfortunately, this estimate is not generally guaranteed to be positive! 

The difficulty with the latter approach can be attributed to the fact 

that the calculation in (B.22) implicitly assumes that the (unknown) lags for 

n > N are zero. The standard "fix" for this problem is to pre-multiply the 

lags by a window function that is zero for n > N and has a positive Fourier 

series (transform). This class of functions has been studied extensively 

[39], and a window can usually be found that yields a positive spectral esti- 

mate. However, a spectrum computed from "windowed" lags is never entirely 

consistent with the original information (lag values). 

Burg was disturbed by the distortion introduced by a more or less arbi- 

trarily selected window function, and he argued that the given set of corre- 

lation coefficients should be extended to produce the spectral estimate. Of 

all possible extensions, Burg preferred the extension with maximum entropy. 

As we have already seen, this choice amounts to truncating the reflection co- 

efficients rather than the lags. One may certainly question whether maximiz- 

ing entropy is the "correct" approach, but the fact remains that the maximum 

entropy method always yields a positive spectral estimate (B.21) consistent 

with the original lags. 

3.   A NOTE ON DEGENERATE PROCESSES 

If the process is perfectly predictable (i.e., degenerate) after M ob- 

servations, the LP filters are no longer uniquely specified for n > M. Faced 

with this situation, one-may prefer the filter with minimum norm. The coef- 

ficients for this filter are easily computed by simply choosing the nth re- 

flection coefficient to minimize 
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|w(n)|2 = |w+(n-l) - k(n) Jw+(n-l) 

for n > M. The reflection coefficient that minimizes this expression is 

kmin(n) = 
w*(n-l) J w+(n-l) 

|w+(n-l)|
2 

In this case, the Schwartz inequality guarantees that the magnitude of the 

reflection coefficient is less than unity. Filter weights calculated via the 

minimum norm criterion obey the (now) familiar recursive relationship 

|w(n)|2= fl - IW*)!2] |W(n-° 
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Appendix C 

COMPARISON OF ALTERNATIVE LIKELIHOOD RATIO TESTS 

FOR ESTIMATING THE NUMBER OF SIGNALS PRESENT 

As was discussed earlier, the MUSIC algorithm needs an estimate for the 

number of emitters in order to form the direction finding spectrum. In this 

appendix, we present the results of a comparative study of several candidate 

likelihood ratio tests (LRT's) which have origins in the multivariate 

statistics literature [42-45]. Simkins [46] and Schmidt [47] have proposed 

the use of an LRT for driving the MUSIC algorithm. The number of signals is 

estimated as follows: A sequence of likelihood ratios is formed using the 

eigenvalues of the sample covariance matrix for the hypotheses of zero 

signals, one signal, etc. Their values are compared to a user-selected 

confidence level of the appropriate X
2 distributions, and the first 

hypothesis whose likelihood ratio passes the test is accepted. 

1.  Candidate LRT's for use with MUSIC 

Figure C.l illustrates the direction-finding accuracy achieved by MUSIC 

when driven by various LRT's.1 As a benchmark, . the performance of MUSIC 

when the number of signals is assumed to be two is also shown (as "MUSIC w/o 

LRT"). The best performance was achieved by MUSIC driven by the Simkins LRT 

using the Lawley approximation [42-44]2 - it was able to achieve the 

benchmark standard. All the LRT's studied asymptotically approach a X
2 

distribution [42-46]; the Lawley approximation helps to match the LRT to the 

lpor Figs. C.l and C.3, the statistics were accumulated based on the 
condition that at least one signal was detected. For assessment purposes, 
when only one signal was resolved, the angle estimate of the second 
undetected signal was set equal to that of the first. At low SNR's the MUSIC 
spectrum exhibits one peak located at the centroid of the two emitters. As a 
result, the RMS error tends to equal half the emitter separation for the case 

of equal-powered emitters. 

^e form for the extra approximation term given by Simkins [44] is 
incorrect, and should be replaced by the form given by Lawley [41]. 
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assumed distribution for small numbers of snapshots [43, 46]. Without the 

Lawley approximation, the LRT overestimates the number of signals. As a 

result, "MUSIC with the Simkins LRT" performs poorer than "MUSIC with the 

Simkins LRT using the Lawley approximation". Finally, "MUSIC with the 

Schmidt LRT" is not at all matched well to the problem. The Schmidt LRT [47] 

exhibits poor performance because the X
2 distribution being used has the 

wrong number of degrees of freedom for the complex valued sample covariance 

matrices under consideration. 

2.  Candidate LRT's for use with ROOT MUSIC 

Because of their poor performance in the MUSIC LRT comparison, the 

Schmidt LRT and the Simkins LRT (without the Lawley -approximation) .were 

automatically ruled out for use with ROOT MUSIC. A comparison of ROOT MUSIC 

driven by the Simkins LRT with the Lawley approximation versus ROOT MUSIC 

assuming two emitters (i.e., "w/o LRT"), as seen in Figs C.2 and C.3, 

demonstrated a need for a more sensitive LRT. 

All of the previously considered LRT's make no assumption regarding the 

noise power.  For the problem at hand, we decided that it was reasonable to 

assume a known noise level, so we tested an LRT which takes advantage of this 

knowledge — what we refer to as the "Lawley LRT (known noise power)" [43]. 

As seen in Fig. C.4, the Lawley LRT detects the presence of two emitters 

approximately  4  dB  earlier  than  the  Simkins  LRT  with  the  Lawley 

approximation,resulting in improved performance in the ROOT MUSIC algorithm 

(Figs. C.2 and C.3).  Note that in Fig. C.2 it is apparent that perhaps an 

additional 5 dB of sensitivity might be obtainable, but that its impact 

(Fig. C.3) upon estimation performance would not be significant.  Thus, the 

sinking LRT with the Lawley approximation was used for ROOT MUSIC Monte Carlo 

experiments described in Section IV. 

3.  Summary 

The Simkins LRT with the Lawley' approximation was judged adequately 

sensitive to drive the MUSIC algorithm, regardless of the number of snapshots 

available. The Lawley LRT for known noise power provides needed additional 

sensitivity to drive ROOT MUSIC and, of course, could also be used with 

MUSIC. There remains a study of the sensitivity of the performance of the 

Lawley LRT to errors in estimating the noise power. 
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Appendix D 

COMPARISON OF TWO POWER ESTIMATION TECHNIQUES 

VIA COMPUTER SIMULATION 

An angle estimation algorithm produces a set of candidate signal 

directions and tests them for authenticity by computing a power estimate for 

each one.  To obtain a set of direction estimates, a vector of weights must 

be computed which minimizes the total power output of the array under various 

constraints which serve to prevent the weighting vector from being the zero 

vector.  Many such constraints are possible, leading to many different 

direction finding algorithms.  With total power minimized, the gain in each 

of the true signal directions must also be minimized.   Therefore, the 

locations of nulls in the weighted array pattern (or peaks in the reciprocal 

pattern) provide the desired set of candidate directions.  An example of a 

plot of the reciprocal array pattern produced by the MUSIC algorithm is shown 

in Fig. D.l for a uniform linear array of five elements spaced X/2   apart. 

There are two signals located at 0 and 2/3 (sine coordinates), and since 

there are no ambiguities in this array, the two peaks accurately reflect the 

directions of the signals.   Notice that these are the only two peaks 

appearing in the reciprocal pattern. 

Unfortunately, many angle estimation algorithms produce more candidate 

directions than the number of actual signals present, with the true signal 

directions scattered among spurious candidate directions. This is especially 

true for thinned linear arrays due to the existence of ambiguities. An 

ambiguity occurs when the direction vectors associated with a set of 

directions are linearly dependent. True signals located in these linearly 

dependent directions will cause false signal indications in other directions 

which are linearly dependent upon the directions of the actual signals. 

To more clearly illustrate this concept of linearly dependent 

directions, refer to Fig. U.2. This shows how ambiguous, linearly dependent 

angles are created when the center element of the aforementioned five-element 

uniform array is removed. For emitters at the angles of ±41.8° (sin 41.8° = 

2/3) to the thinned array, the phase at each element is shifted ±120°, 
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combined with an emitter at 0°, the total signal at each element adds to 

zero. The signal does not add to zero at the center element, but since that 

element has been removed, this information is not available. Due to the 

linear dependence of the direction vectors, signals located at 0° and 42° 

would be indistinguishable from a pair located at ±42°, or 0° and -42°. 

Furthermore, this ambiguity is amplitude independent and occurs for any set 

of three angles which satisfy 

sine. - sin62 = sin92 - sin91 = 2/3 

Figure D.3 is the reciprocal pattern plot from the four-element thinned array 

mentioned above. The true signals are still located at 0 and 2/3 as in the 

other pattern, but notice how removing the center antenna element causes the 

angle estimation algorithm to show a third spurious peak at -2/3. 

The purpose of the power estimation algorithm is now clear. Hopefully, 

if a signal power estimate is computed for each candidate signal direction, 

then the powers in the spurious directions will be at the noise level or 

significantly below those of the true signal directions. A simple threshold 

test can then identify and reject the "false alarms" while retaining the true 

signal directions. 

The most straightforward way to estimate the power of each signal is via 

a direct mathematical solution. First, assume that the sampled covariance 

matrix, S, is equal to the true covariance matrix, R, which is unknown. It 

may be shown that any true covariance matrix can be written in the form 

R = a2I + VPVH 

where the columns of V are the direction vectors and P is a diagonal matrix 

whose entries correspond to the power for each direction vector v.  Solving 

the above equation for P with S substituted for R yields 

1i.e., the signals are incoherent. 
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= O^V)"1 V*1 (S - ah)  V O^V) 
-1 

When P is determined in this manner, it will not be exactly diagonal, 

since S = R was only an approximation. The diagonal elements of P are 

nonetheless a very reasonable approximation of the signal powers, so the 

non-diagonal elements may be ignored. 

The direct solution method will work unless (VHV) is singular. This 

occurs when the columns of V are dependent. A singular (V«V) is not a 

problem for uniform linear arrays with interelement spacing < X/2 because no 

direction vectors are dependent, but it is a problem for thinned arrays. 

To avoid this problem a least-squares solution is sought in which the 

powers Pi, ?2, • • •» PN are selected so as to minimize the squared 

error between S and R. The squared error may be expressed 

E = »S - RH_  (Frobenius norm) 
R 

-  I  I 
m 

mn   ran 

Since the inverse of vHv is not required to solve this problem, this 

method has a chance of exhibiting reasonable performance when signals are 

located ambiguously. In an ambiguous case, the actual signals should have 

normal power estimates and the spurious signal indications should have power 

estimates at the noise level. 

In order to compare the theoretical performance of the direct solution 

and the least-squares solution in an ambiguous situation, a computer 

simulation was set up using the four-element thinned array as the receiving 

antenna (Fig. D.4) and two emitters of equal power. One emitter was held 

fixed at 0° or directly broadside to the antenna. The other emitter was 

moved step by step closer to 41.8° (Arcsin 2/3) which is an ambiguous 

situation.  The beamwidth of this antenna is 23° and the simulation began 
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with Che unfixed signal 0.32 widths or 7.33= »ay fro» the ambiguous 

an5le. The separation »as reduced in 3 dB steps beamwidth separation and 

then to a zero t*a«width separation (exact coincidence with the ambiguous 

angle). The second input variable »as the signal-to-noise ratio. A trial 

consisted of 100 "looks" at the array output, that is, 100 data vectors which 

„ere processed to for- a single covariance matrix. After the angle 

estimation algorithm produced a set of direction estimates for the signals, 

the power estimation algorithm generated a power estimate for direction. For 

each signal-te-uoise ratio (0 to 50 dB in 10 dB steps) at each Separatxon 

angle, 100 trials »ere conducted in order to compile power error statistics 

for each solution method. 
The results of the simulation may be seen in Figs. D.5 and D.6. There 

are two curves for each separation, one for each signal, and the area between 

them is shaded. In Fig. D.5, the bottom curve (brown) represents the best 

performance of the direct solution method. For separations greater than .32 

BW, this curve approximately represents the lower error bound. When the 

separation decreases, however, representative curves break away from the 

lower bound at progressively higher signal-to-noise ratios. Finally the 

direct method breaks down completely at zero separation. 

Now, the least-squares performance curves in Fig. D.6 may be compared 

with the direct solution. The thick curve includes all of the separations of 

„g. D.5, including zero separation. The curves in Fig. D.6 are all almost 

exactly coincident with the lower error bound for the direct solution, 

regardless of the separation from the ambiguity. 

in summary, theory and experiments show that the direct solution power 

estimator can fail for non-uniform arrays. Whereas the traditional 

direction finding problem has been resolving closely-spaced signals, it has 

been shown that wide angles are also a problem when non-uniform arrays are 

used. The least-squares power estimator is able to identify and reject 

spurious signals in situations where the direct solution breaks down due to 

ambiguities. Experimental data shows that least-squares performance remains 

constant independent of the signal separation from an ambiguity.  Therefore, 
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a processing system using this power estimation technique will be able to 

overcome the ambiguity problem of thinned arrays while allowing accuracy 

comparable to uniform arrays. 
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Appendix E 

SAMPLING FROM THE WISHART DISTRIBUTION 

1.  THE COMPLEX WISHART DISTRIBUTION 

Let r be an M-dimensional, complex (circular) Gaussian vector with zero 

mean and covariance R. Given K observations {r(k)|k=l,...,K}, the sample co- 

variance matrix 

R = i  I    r(k)rn(k) 
K k=l 

is a sufficient statistic for inferring parameters of R. However, when K is 

less than M, the sample covariance matrix has less than full rank and is 

therefore singular. To avoid unnecessary complications, the analysis pre- 

sented here is based on the simplifying assumption 

K > M 

Under the above conditions, the probability distribution of the elements of a 

sample covariance matrix is completely specified by the complex Wishart dis- 

tribution [31]. In particular, the joint probability density function of the 

elements of 

A = K R ^a) 

may be written as 

The normalization constant c(K,M) is given by 
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C(K,M) = Z01"072 r(K)  ...  r(K-M+D 

where   IX v)  is  the gamma function  [45] 

r( V)  = |    x^1 e^dx ;   v >  1 
0 

Since IX1) = 1, the recursive property of the gamma function 

r(vfi) = v r(v) (E,3) 

establishes the familiar factorial formula 

r(n) = (n-1)! 

for any positive integer n. 

The probability density function (pdf) in (E.2) is defined over the do- 

main of non-negative definite Hermitian matrices. While theoretically quite 

elegant, this formula is awkward to use in many practical calculations. The 

fundamental problem is that the elements of a sample covariance matrix are 

not statistically independent. Even in the special case where R is the iden- 

tity and K=M, the restriction of (E.2) to a semi-definite domain complicates 

matters considerably. 

Fortunately, the Cholesky decomposition of A leads to a much more useful 

representation. Thus, consider the class of (MxM) upper triangular complex 

matrices with (real) positive elements along the main diagonal. The elements 

above the main diagonal are unrestricted, whereas the elements below the main 

diagonal are identically zero. For every positive definite Hermitian matrix 

A defined by (E.l) there exists a unique upper triangular matrix U such that 

A = D^U 
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Goodman [31] has shown that the joint pdf of the elements of Ü is generally 

of the form 

However, when- R is the identity matrix I, the joint pdf of the elements of U 

.ay be expressed as the product of the marginal densities of the individual 

elements. This observation stems from the fact that 

Tr (UV - I |nj: 
I»  I' I mn1 

m,n 

The implication is that in the special case R=I the elements of U are statis- 

tically independent! In order to establish this important result, we first 

recognize that 

pn («) = (1/») exp {-|z|2}    ;  complex z, m < n (E.5) 

mn 

is the pdf of a (complex) circular Gaussian random variable with zero mean 

and unit variance. Setting R=I in (E.4) and integrating out the H(M-l)/2 

complex Gaussian terms leaves the pdf of the main diagonal of U, i.e., 

Evidently, the mth diagonal element has the marginal density 
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P„  w^.^"-'«-!-2!      ■*>»      • (E-6' DU  w   r(K-nrfl) 
mm 

This pdf is closely related to the chi-square distribution with 2(K-m+l) de- 

grees of freedom. Thus, consider the random variable 

2 (E.7) 
n Y_ = (1/2) X2n 

obtained by simply scaling a chi-square random variable with 2n degrees of 

freedom. It can be shown that the pdf of (E.7) is a gamma density, i.e., 

PYW = Tclbxn_1 exp {-x }     'x>0     • 
n 

The general form of the gamma density [46] is obtained by replacing n with a 

real number v > 1 and introducing a positive scale factor a, i.e., 

pov (x) = a p (ax) 

V 
a x r(v) 

v_1 exp { -ax }    , x > 0    . (E.8) 

The gamma variate (i.e., random variable) obtained by setting a=l in (E.8) is 

referred to here as the vth order gamma variate. It follows from the recur- 

sive property of the gamma function (E.3) that the expected value of the vth 

order gamma variate is v. 

The pdf of the square root of the vth order gamma variate is 
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p 1/2 (x) - 2 x p  (x
2) 

Y v 
V 

2  _2^1 ___ | _x2 }    t  x > o 
r(v) 

exp 

Comparing this pdf with (E.6), we conclude that the diagonal elements of U 

are square roots of integer order gamma variates. Specifically, we have 

1/2 
mm  YK-m+l 

2.  APPLICATION TO MONTE CARLO SIMULATIONS 

Sample covariance matrices can be generated directly from the Wishart 

distribution as follows. Given an arbitrary covariance matrix R, consider 

any convenient "square-root" decomposition 

R = LLH 

The observed vector r may be interpreted as the linear transformation 

r = Lw 

of a normalized vector w with covariance 

E {ww } = I 

It follows that any sample (covariance matrix) of r is statistically equiva- 

lent to a linear transformation of a corresponding sample (covariance matrix) 

of w, i.e., 

A. ^  TT 

R = LWL 
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Since 

At 

E {w} = I 

the argument presented in the previous section applies, and hence we may con- 

struct 

from the upper triangular matrix Ü with statistically independent elements 

described by (E.5) and (E.6).  If L is the (lower) Cholesky factor of R, then 

K R = LtrW* 

= (LUH) (LüV 

is obtained as the product of its Cholesky factors. 

The complex Gaussian elements of U (above the main diagonal) can be gen- 

erated using any one of a number of well-known techniques. Perhaps the most 

elegant approach is to compute 

z = (-In u)1/2 exp { 12w } 

where u and v are statistically independent random variables uniformly dis- 

tributed over the semi-open interval (0,1]. This method is based on the fact 

that -In u is an exponential random variable with unit mean (i.e., a first 

order gamma variate). Moreover, nth order gamma variates can be generated by 

summing n jointly independent exponential variates. Thus, the remaining ele- 

ments of U (on the main diagonal) could be obtained from expressions of the 

form 

116 



K-m+1 i /o 

x= I      [-In u(k)]i/Z 

where the {u(k)} are uniformly distributed over (0,1] and jointly 

independent. However, a Fortran subroutine is widely available [47] that 

calculates, gamma variates much more efficiently, particularly for large 

values of K. This algorithm is based on the method of acceptance/rejection 

testing [48]. 
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APPENDIX F 

DIRECTION FINDING EXPERIMENTS 

The results of the Monte Carlo experiments described in Section IV.A are 

included in their entirety. Four different parameter variations are 

explored: 

(1) Signal-to-Interference Ratio Group 

A. 0 dB    B. -10 dB 

(2) Emitter Separation Group 

A. 0.1 Beamwidths    B. 0.2 Beamwidths  C. 0.4 Beamwidths 

(3) Number of Looks Group 

A. 10    B. 100    C. 1000 

(4) DF Method Group 

A. Spectral    B.  Root 

AAR ROOT AAR 
MEM ROOT MEM 
MLM ROOT MLM 
MUSIC ROOT MUSIC 
TNA 

using these group designations, the 36 summary plots for the direction 

finding experiments can be indexed as follows: 

SIR 
GROUP 

SEPARATION 
GROUP 

LOOKS 
GROUP 

A 

DF METHOD 
GROUP FIGURE 

A A A 
• B 

F-l 
F-2 

B A 
B 

F-3 
F-4 
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SIR 
GROUP 

SEPARATION 
GROUP 

LOOKS 
GROUP 

C 

DF METHOD 
GROUP FIGURE 

A 
B 

F-5 
F-6 

B A A 
B 

F-7 
F-8 

B A 
B 

F-9 
F-10 

C A 
B 

F-ll 
F-12 

C A A 
B 

F-13 
F-14 

B A 
B 

F-15 
F-16 

# 

C A 
B 

F-17 
F-18 

B A A A 
B 

F-19 
F-20 

B A 
B 

F-21 
F-22 

C A 
B 

F-23 
F-24 

B A A 
B 

F-25 
F-26 

B A 
B 

F-27 
F-28 

C A 
B 

F-29 
F-30 

C A A 
B 

F-31 
F-32 

B A 
B 

F-33 
F-34 

C A 
B 

F-35 
F-36 
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Appendix G 

ADAPTIVE LISTENING EXPERIMENTS 

The results of the Monte Carlo experiments described in Section IV.B. 

are included here in their entirety. The curves in these figures all 

represent loci of 10 dB output signal-to-interference-plus-noise ratio for a 

two-emitter problem with the desired signal 10 dB weaker than the 

interferer. The results are divided into three sections: (1) Model 

Covariance Method Experiments (pp. G-3 - G-14); (2) Projection Method 

Experiments (pp. G-15 - G-26); and (3) Effects . of Likelihood Ratio Test for 

MUSIC (pp. G-27 - G-30). 

In the first two sections, three different parameter variations are 

explored: 

(1) DF Method Group 

A.  ARM* B. 
AAR 
MEM 
TNA 
MUSIC* 
MLM 

(2) Snapshot Group 

A.  20 B. 

(3) Calibration Error Group 

A.  0 dB Amplitude    B. 
0° Phase 

ROOTMEM 
ROOTTNA 
ROOTMLM* 
ROOTMUSlC 

100 

0.05 dB 
0.5° 

0.5 dB 
5.0° 

Using these group designations, the 24 summary plots for the Model 

Covariance Method and Projection Nulling Method can be indexed as follows: 

*Note that in the projection method evaluation only the algorithmns 
indicated were compared, since the results tended to be identical with those 
obtained for the model covariance method. 
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DF METHOD 
GROUP 

SNAPSHOT 
GROUP 

CALIBRATION 
ERROR GROUP 

MODEL 
COVARIANCE 

METHOD 
FIGURE 

PROJECTION 
NULLING 
FIGURE 

A A A 
B 
C 

G-l 
-2 
-3 

G-13 
-14 
-15 

B A 
B 
C 

-4 
-5 
-6 

-16 
-17 
-18 

B A A 
B 

-7 
-8 

-19 
-20 

C -9 -21 

B A 
B 
C 

-10 
-11 
-12 

-22 
-23 
-24 

The remaining four plots (G-25 to -28) illustrate the impact of the 

alternative likelihood ratio tests for driving MUSIC and Root MUSIC, as 

described in Section III .A and Appendix C. It can be seen from these results 

that, even for only 20 array snapshots, the choice of LRT is not important 

for signals separated by less the 0.4 beamvidths with spectral MUSIC or less 

than 0.2 beamwidths for Root MUSIC. Moreover, even in the worst case, the 

impact of the choice of LRT is only seen to be at most a couple of dB in 

required array SNR. Thus, we conclude that the choice of LRT is more 

important as a factor in direction-finding performance than it is for 

adaptive listening. 
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